基于CAN总线的隧道环境监控系统的研究

发布者:时光如梦最新更新时间:2011-05-05 关键字:CAN总线  隧道环境监控 手机看文章 扫描二维码
随时随地手机看文章

    由于隧道的相对封闭性和其中行车环境的复杂性,要保障其安全运营存在一定的复杂性。尤其对于高速公路中的长隧道(长度介于1 km和3 km之间)和超长隧道(长度高于3 km),由于车速高、流量大以及通风等问题的存在,隧道中容易累积汽车尾气中的CO、氮氧化物等有害气体。另外,隧道中还可能因为照明故障、能见度低等问题的产生导致交通事故的发生。为保证隧道的运营安全,避免造成安全事故和重大经济损失,应对隧道配备完善的环境参数监控系统。

    本文介绍的隧道环境监控系统,利用区域控制部分的实时监控技术对各监控点的照明亮度、能见度、CO浓度、烟雾浓度等参数进行采集、监测,并根据这些参数控制相关的交通灯、应急灯、LED交通指示牌、限速牌以及报警装置。然后通过现场总线将各节点的参数和报警信号发送至本地监控中心,由本地控制中心对各区域控制模块进行调度。本地控制中心还将这些参数通过以太网发送至远程监控终端处,在终端上远程监控隧道的环境参数。


1 系统总体结构

    系统的总体结构如图1所示。系统主要包括区域控制部分、本地控制中心和远程监控终端。

    安装在隧道中的区域控制部分采用CAN总线分布式数据采集控制方式。当系统启动后,各环境参数监测点开始采集环境参数,并在接收到发送数据命令后将数据传送至CAN总线。在区域控制模块接收处理数据后会控制报警器等相关设备。

    由于CAN总线协议不对节点进行地址编码,而是采用对通信数据块进行编码的方式,这使得CAN总线上的节点数量理论上几乎不受限制[2]。然而实际上,由于存在电气特性上的限制,CAN总线上节点数量不宜超过100个。因此各个区域控制模块与本地控制中心使用另一条CAN总线进行数据通信。区域控制模块在采集到环境参数并做出控制动作后会将参数打包通过CAN总线发送至本地控制中心的工控机。本地控制中心如收到某个区域控制部分的报警信号,会根据报警信号类型对该区域控制部分前方的各区域控制部分做出控制,提前预警车辆隧道前方通行环境存在问题。

    远程控制终端通过客户端的显示程序显示出由本地控制中心发送的隧道环境参数,并将参数保存在数据库,以实现历史数据的存储。

2 系统硬件设计

    整个系统硬件部分包括由区域控制模块和各环境参数测量模块组成的区域控制部分、本地控制中心的工控机以及监控终端。其中关键部分为区域控制部分,本文将对这部分进行重点介绍。

    区域控制模块选用意法半导体公司的STM32F105RCT6为控制核心,它是采用ARM Cortex-M3为内核的32位高性能嵌入式微处理器。它集成了两个CAN控制器,并为每个CAN控制器分配了256 B的SRAM,每个CAN控制器有三个发送邮箱和两个接收FIFO[1]。模块的其他外设包括用于CAN总线信号收发的CAN收发器,用于显示当前环境参数的点阵液晶,用于实现基本控制功能的按键等。区域控制模块的硬件框图如图2所示。

    区域控制模块中CAN总线接口电路由STM32F105RCT6中内置的CAN控制器和CAN收发器SN65HVD230D组成。STM32F105RCT6的PA11/CAN1_RX和PA12/CAN1_TX为CAN1控制器接口,将其与CAN收发器连接后接入与各测量模块相连的CAN总线中;PB12/CAN2_RX和PB13/CAN2_TX为CAN2控制器接口,将其与CAN收发器连接后接入与其他区域控制部分及本地控制中心相连的CAN总线中。

[page]

    能见度测量模块由能见度检测仪和控制模块组成。能见度检测仪能将检测到的能见度值通过RS232发送至控制模块。当区域控制模块向能见度测量模块中的控制模块请求数据时,控制模块会使能见度检测仪通过RS232向控制模块发送数据,并转换成CAN数据包发送至CAN总线。其他测量模块工作模式与能见度测量模块相同。

3 区域控制模块软件设计

    由于区域控制部分在测量环境参数以及控制相应设施方面对实时性和稳定性要求,区域控制模块选择使用μC/OS-II管理控制任务的调度。μC/OS-II是一个专为嵌入式应用设计,基于优先级调度的抢占式实时操作系统内核,它包含了任务调度、任务管理、时间管理/任务间通信与同步等功能。各任务之间通过信号量、邮箱和消息队列实现相互间的数据交换和同步[3]。

    根据区域控制模块在系统中的作用,嵌入式操作系统中应实现多个不同优先级的控制任务。这些任务按照优先级由高到低分别为:接收本地控制中心调度;接收按键控制;采集环境参数;控制相关设备;显示环境参数;发送数据到本地控制中心。对于区域控制系统来说,本地控制中心的调度命令决定着它的系统设置,因此需要把接受本地控制中心调度任务分配到相对最高的优先级。其他任务也根据相对的重要性和执行顺序分配相应的优先级。系统启动流程图如图3所示。

    硬件初始化程序负责初始化芯片的系统时钟、中断向量、I/O配置、CAN配置等。操作系统初始化程序负责初始化任务的空闲链表和使用链表、时钟管理等。在启动任务调度之前需利用OSTaskCreate()函数创建需要使用的任务,设置不同任务的堆栈区和优先级。然后使用OSStart()函数开始多任务调度。多个任务之间需要共享环境参数,因此在任务创建之前分配一块共享内存以供任务间数据通信。以下重点介绍环境参数采集任务和控制设备任务的软件实现。

    环境参数采集任务和控制设备任务中CAN总线使用CAN 2.0B协议,波特率设置为250 kb/s。STM32F105RCT6的CAN控制器中包含28个共享的可配置标识符过滤器组。通过过滤器组的设置,配合使用不同的接收FIFO寄存器,可以在硬件上设置区分不同标识符的报文。每收到一帧报文,首先与过滤器组中设置的报文ID进行比较。报文如果与过滤器组中设置的环境参数报文的ID匹配则将报文送入接收FIFO0寄存器,如果与过滤器组中控制报文的ID匹配则将报文送入接收FIFO1寄存器,如果都不匹配,则认定此报文为垃圾报文,直接丢弃。

    环境参数采集采用轮询的方式,由区域控制模块轮询请求各数据采集点的数据,轮询时间间隔为1 s,轮询由任务延时函数OSTimeDLY()实现。在接收到所有环境参数采集点的数据后,这些参数将被存入共享内存。接着通过OSTimeDLY()函数的调用,实现将当前任务挂起,并延时时钟节拍1 s,然后调用OSSched()进行任务重新调度。在指定的时钟节拍到来之后,当前任务会被恢复为就绪状态。环境参数采集任务流程图如图4所示。

  控制设备任务的优先级仅次于环境参数采集任务,在环境参数采集任务被挂起后运行。控制设备任务首先访问读取共享内存区的环境参数,根据阈值判断是否对各控制设备做出动作。在结束动作之后,本任务也会调用OSTimeDLY()函数挂起自己以实现下一优先级任务的运行。

    接收本地控制中心调度任务和按键控制任务在创建之后就通过调用OSTaskSuspend()函数进入挂起状态,当接收到调度命令和按键中断以后,才会通过调用OSTaskResume()函数恢复任务,实现任务的执行。

    本文给出了基于CAN总线的隧道环境监控系统的软硬件设计方法。系统中区域控制模块采用高性能嵌入式微处理器和嵌入式实时操作系统为核心,并使用稳定的工业现场总线,保证了系统的高可靠性和高实时性,满足了隧道环境的监控需求。

关键字:CAN总线  隧道环境监控 引用地址:基于CAN总线的隧道环境监控系统的研究

上一篇:单片机的I2C总线与MAX517与数据通信
下一篇:RS485总线稳定性解决方案

推荐阅读最新更新时间:2024-05-02 21:22

基于TMS320LF2407A的双CAN口同步通讯板设计
  随着现代战争要求武器系统在战场条件下的可靠性和维修性提高,传统分离式控制系统的快速保障难以满足要求。一体化车载PLC控制器以其高可靠性、模块化特性使其应用于防空武器火力控制,为了将其扩展到具有TTCAN(Time Trigger CAN)网络的武器系统,需解决PLC与TTCAN网络的数据同步问题。这里提出一种基于TMS320LF2407A的双CAN口同步通讯板设计,从而解决了车载PLC与防空武器TTCAN网络链接问题。    2 双CAN口同步通讯板总体设计方案   由于系统TTCAN网络是时间触发的实时通讯,一体化车载PLC的通讯接口是标准的CAN,不具备接收同步信号和按指定时间序列发送数据的能力,因此无法直接与TTCA
[嵌入式]
地铁屏蔽门CAN总线故障排查流程
摘要:地铁是人们出行的重要交通工具,随着地铁线路全面铺设,人们对于地铁的安全性能越来越关注,尤其是地铁屏蔽门的可靠性,那么在复杂的地铁控制系统中,如何进行地铁屏蔽门CAN总线故障排查呢?本文将做详细介绍。 地铁屏蔽门控制系统——CAN总线的应用 目前地铁采用了自动化的技术来实现全方位的控制,地铁综合控制系统包括ATC(列车自动控制)、SCADA(电力监控系统)、BAS(环境监控系统)、FAS(火灾报警系统)、PSD(屏蔽门/安全门系统)等,这些系统在全线形成网络,由控制中心统一分级控制。 其中,地铁屏蔽门系统PSD是基于CAN总线实现的,如图1所示该系统包括以下子单元: 图 1 地铁屏蔽门控制系统示意图
[测试测量]
地铁屏蔽门<font color='red'>CAN总线</font>故障排查流程
基于CAN总线的智能继电器研究
0 引言 过去的几十年里,在很多电气设备中,比如车辆、舰船、飞机等中的电气用电设备,它们一直采用保险丝盒断路器等被动防护装置,致使无法故障预警,故障诊断起来也比较困难,严重影响了设备的整体性能;同时,由于总线类设备能提供信息查询、故障记录、参数保护等功能。因此在一些底层器件中引入总线技术,能更方便用户配置系统,就像设备中多了很多对眼睛,可以很好地把握设备的工作情况。所以研发具有预警和诊断功能的新器件势在必行。 本文中主要是在继电器中引入总线技术,使得继电器具有总线通信功能。通过总线继电器控制模块可以将具有智能化、网络化功能的电器节点模块有机的组合起来,构成一种新的电气负载管理系统,即针对系统发出的指令进行逻辑切换和信息反馈
[嵌入式]
CAN总线解决方案在拉丝机上的应用
  拉丝机系统是一个对速度的控制要求高的一种机械设备,要求控制系统能够提供非常精确、平滑的线速度。我们所做的这套系统是用来拉金丝的,因此系统的各方面要求更高。整个系统比较复杂,控制设备繁多,各个电机之间要求很高的协调性,该系统采用4套伺服电机控制,而每套伺服电机间均有数据交换,且数据通讯也要求很强的实时性,也就是要求系统具有总线通讯能力。这样就要求伺服驱动器拥有非常强大的功能才能满足控制要求。而我们的伺服驱动器则能满足此类系统控制要求,下面是我们驱动器的一些功能特点:   1、全数字化的速度和位置控制功能,并提供位置、速度和扭矩的控制功能;   2、灵活多变的跟踪控制方式,提供高灵敏度的跟踪效果;   3、可编程控制的数字输
[嵌入式]
煤矿现代化视频监测监控技术研究与应用
随着国家对煤矿企业安全生产要求的不断提高和企业自身发展的需要,我国各地的大、中、小煤矿陆续装备了矿井监测监控系统。这些系统的装备大大提高了矿井安全生产水平和安全生产管理效率,同时也对该项技术的正确选择、使用、维护和企业的安全生产信息化管理提出了更高的要求。目前,煤矿安全监控系统具有模拟量、开关量、累计量采集、传输、存储、处理、显示、打印、声光报警、控制等多项功能,用来监测井下的甲烷浓度、一氧化碳浓度、二氧化碳浓度、氧气浓度、风速、负压、温度、烟雾、馈电状态、风门状态、风窗状态、风筒状态、局部通风机开停、主要通风机开停、工作电压、工作电流等,并且实现了甲烷超限声光报警、断电和甲烷风电闭锁控制等。近几年来,兖州矿业(集团)有限责任公司
[嵌入式]
CAN总线加密的Trillium将可能成为汽车安全防护的好把式
一直以来,大家都认为CAN总线几乎是没法保护的。但Trillium的SecureCAN显然打破了这个“迷信”。 汽车安全领域的技术产品正在变得炙手可热。大量创业公司涌入,潜心技术开发的同时,都期待着能成为大公司收购的下一个目标。去年夏天,白帽黑客查理·米勒和老搭档克里斯·瓦拉塞克入侵了一辆Jeep切诺基。几乎是同一时间,通用安吉星的RemoteLink系统被爆安全漏洞,黑客利用系统网关能够远程操控车门解锁,发动机启停。下图是英特尔公布的目前联网汽车上暴露出的15个最容易被黑客利用的攻击面。 因此,照目前的形势来看,车企和供应商在智能互联、自动驾驶汽车上投入的精力越多,他们对安全的重视程度就越高,而网络安全对汽车产业朝着智
[汽车电子]
如何抗干扰——CAN总线抗干扰的6条“军规”
随着CAN总线在电动汽车、充电桩、电力电子、轨道交通等电磁环境比较恶劣的场合应用越来越多,信号干扰的问题已经严重影响到使用者对CAN总线的信任。究竟如何才能抗干扰?本文展示了致远电子CAN总线抗干扰的6条“军规”。 在汽油车时代,CAN总线遇到的干扰少之又少,即使有一些继电器和电磁阀的脉冲,也不会有很大影响,稍微进行双绞处理,完全可以实现零错误帧。 可是到了电动汽车年代,逆变器、电动机、充电机等大功率设备对CAN的影响足以中断通讯,或者损坏CAN节点,如图1图2所示,就是被逆变器干扰的CAN波形。 图1 干扰前 图2 干扰后 面对干扰,各个汽车厂、零部件厂,测试诊断设备的厂商都纷纷研究抗干扰之“妙方”
[汽车电子]
如何抗干扰——<font color='red'>CAN总线</font>抗干扰的6条“军规”
STM32 CAN总线传输波特率的计算
本人用的单片机是STM32F407,其它型号的单片机类似,可做参考! 一、标准CAN协议位时序概念 由于CAN属于异步通讯,没有时钟信号线,连接在同一个总线网络中的各个节点会像串口异步通讯那样,节点间使用约定好的波特率进行通讯。 同时,CAN还使用“位同步”的方式来抗干扰、吸收误差,实现对总线电平信号进行正确的采样,确保通讯正常。 为了实现这个位同步,CAN协议将每个位的时序分解为四段:SS段、PTS段、PSB1段、PBS2段。同时定义最小的时间单位:Tq,四个段的长度用x个Tq表示,加起来就是一个位的时序。 用一个图来表示可能会形象一点,如图一个位的时序就是19Tq。 以上就是CAN标准协议定义的位时序,而S
[单片机]
STM32 <font color='red'>CAN总线</font>传输波特率的计算
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved