模拟I²C总线多主通信研究与软件设计

发布者:神秘行者最新更新时间:2011-05-19 来源: 西安电子科技大学 关键字:模拟I²C  I²C总线 手机看文章 扫描二维码
随时随地手机看文章

  I2C总线(Inter IC BUS)是Philips公司推出的双向两线串行通信标准。由于它具有接口少、通信效率高等优点,现已得到广泛的应用[1~3]。它除了可以进行简单的单主节点通信外,还可以应用在多主节点的通信系统中。在多主节点通信系统中,如果两个或者更多的主节点同时启动数据传输,总线具有冲突检测和仲裁功能,保证通信正常进行并防止数据破坏。现在许多微控制器(MCU)都具有I2C总线接口,能方便地进行I2C总线设计。对于没有I2C总线接口的MCU,可以采用两条I/O接口线进行模拟[2,3]。目前,一些介绍模拟I2C的资料主要讲的是在单主节点系统中进行的通信,这使得模拟I2C总线的应用具有一定的局限性。本文根据总线仲裁的思想,提出一种多主节点通信的思想及实现流程。

  1  I2C总线系统简介[1~3]

  I2C总线系统是由SCL(串行时钟)和SDA(串行数据)两根总线构成的。该总线有严格的时序要求,总线工作时,由串行时钟线SCL传送时钟脉冲,由串行数据线SDA传送数据。总线协议规定,各主节点进行通信时都要有起始、结束、发送数据和应答信号。这些信号都是通信过程中的基本单元。总线传送的每1帧数据均是1个字节,每当发送完1个字节后,接收节点就相应给一应答信号。协议规定,在启动总线后的第1个字节的高7位是对从节点的寻址地址,第8位为方向位(“0”表示主节点对从节点的写操作;“1”表示主节点对从节点的读操作),其余的字节为操作数据。图1列出I2C总线上几个基本信号的时序。

  图1中包括起始信号、停止信号、应答信号、非应答信号以及传输数据“0”和数据“1”的时序。起始信号就是在SCL线为高时SDA线从高变化到低;停止信号就是在SCL线为高时SDA线从低变化到高;应答信号是在SCL为高时SDA为低;非应答信号相反,是在SCL为高时SDA为高。传输数据“0”和数据“1”与发送应答位和非应答位时序图是相同的。


  图1  I2C总线上基本信号的时序

  图2表示了一个完整的数据传送过程。在I2C总线发送起始信号后,发送从机的7位寻址地址和1位表示这次操作性质的读写位,在有应答信号后开始传送数据,直到发送停止信号。数据是以字节为单位的。发送节点每发送1个字节就要检测SDA线上有没有收到应答信号,有则继续发送,否则将停止发送数据。


  图2  一次完整的数据传送过程

  2  I2C总线的仲裁

  在多主的通信系统中。总线上有多个节点,它们都有自己的寻址地址,可以作为从节点被别的节点访问,同时它们都可以作为主节点向其他的节点发送控制字节和传送数据。但是如果有两个或两个以上的节点都向总线上发送启动信号并开始传送数据,这样就形成了冲突。要解决这种冲突,就要进行仲裁的判决,这就是I2C总线上的仲裁。

  I2C总线上的仲裁分两部分:SCL线的同步和SDA线的仲裁。SCL同步是由于总线具有线“与”的逻辑功能,即只要有一个节点发送低电平时,总线上就表现为低电平。当所有的节点都发送高电平时,总线才能表现为高电平。正是由于线“与”逻辑功能的原理,当多个节点同时发送时钟信号时,在总线上表现的是统一的时钟信号。这就是SCL的同步原理。

  SDA线的仲裁也是建立在总线具有线“与”逻辑功能的原理上的。节点在发送1位数据后,比较总线上所呈现的数据与自己发送的是否一致。是,继续发送;否则,退出竞争。图3中给出了两个节点在总线上的仲裁过程。SDA线的仲裁可以保证I2C总线系统在多个主节点同时企图控制总线时通信正常进行并且数据不丢失。总线系统通过仲裁只允许一个主节点可以继续占据总线[1]。

  图3是以两个节点为例的仲裁过程。DATA1和DATA2分别是主节点向总线所发送的数据信号,SDA为总线上所呈现的数据信号,SCL是总线上所呈现的时钟信号。当主节点1、2同时发送起始信号时,两个主节点都发送了高电平信号。这时总线上呈现的信号为高电平,两个主节点都检测到总线上的信号与自己发送的信号相同,继续发送数据。第2个时钟周期,2个主节点都发送低电平信号,在总线上呈现的信号为低电平,仍继续发送数据。在第3个时钟周期,主节点1发送高电平信号,而主节点2发送低电平信号。根据总线的线“与”的逻辑功能,总线上的信号为低电平,这时主节点1检测到总线上的数据和自己所发送的数据不一样,就断开数据的输出级,转为从机接收状态。这样主节点2就赢得了总线,而且数据没有丢失,即总线的数据与主节点2所发送的数据一样,而主节点1在转为从节点后继续接收数据,同样也没有丢掉SDA线上的数据。因此在仲裁过程中数据没有丢失。


  图3  两个主节点的仲裁过程

  3  多主通信的原理及其实现流程

  多主通信就是在总线上有多个节点。这些节点既可以作为主节点访问其他的节点,也可以作为从节点被其他节点访问。当有多个节点同时企图占用总线时,就需要总线的仲裁。对于模拟I2C总线系统,怎样实现总线的仲裁是现在研究模拟I2C总线系统的难点。文献[4]提出在系统中增加1根BUSY线,在占用总线之前先检测BUSY线,看总线是否被占用。若总线空闲,则设置BUSY线并向总线上传送数据;否则,接收数据,直到总线空闲时才占有总线。这种实现多主通信的方法有两个缺点:① 因为I2C最大的优点就是接口少、效率高,这样做不仅增加了使用资源而且减少了I2C总线的优势;② 当主节点数比较多时,等待时间比较长,效率不高。本设计根据总线的仲裁原理,提出一种基于延时比较的仲裁方法。当主节点想要占用总线时,先检测总线上是否空闲,如果总线是空闲的就发送数据。在发送数据的同时,将总线上的数据接收并与发送的数据进行比较。如果不同,说明总线上同时还存在其他节点,于是就退出;否则,一直到发送完数据。这种方法既体现了I2C总线的高效性,同时还具有良好的扩展性。


  图4  多主通信流程

  图4给出了基于延时比较的多主通信流程,其中MCU作为从节点部分的流程在图5中给出。在节点发送起始信号之前先要检测一下总线上是否为空闲状态(BUSY是否为0)。这里使用的检测方法是,持续检测一段时间看总线上的电平是否一直为高,若是说明总线上为闲状态,否则说明有其他的节点正在使用总线,要等一段时间再发送。当总线空闲时,发送起始信号,接着发送要访问的从节点的地址字节。每发送1位数据就接收比较1次,看发送和接收的是否一致,若是则继续,否则跳出到从节点的接收状态。如果没有产生冲突,MCU作为主节点继续发送数据,直到任务结束,然后发送停止信号并返回。如果数据不一样,MCU将跳转到从节点状态。由于在跳转到从节点接收状态的过程中累加器(ACC)和工作寄存器(Ri)的数据没有发生变化,所以数据没有丢失,作为从节点可以继续接收总线上的数据。这样整个通信的过程没有中断,数据也没有丢失。


  图5  从节点部分的流程

  图5给出了从节点的流程。进入从节点时,要将BUSY置为高,说明MCU现在正在工作,不能完成其他的任务。在MCU作为从节点完成接收任务后,要将BUSY置为低。MCU在接收到寻址字节后与自己的地址字节进行比较。如果是访问自己的就进入到下面的接收程序,否则跳出。在访问自己的时候,还要判断主节点是读取数据还是写数据,以便进入相应的程序。在写字节的子程序中,从节点每发送1个字节的数据后都要察看是否有应答信号(ACK),有则说明数据接收到了;否则要跳出等待,重新发送。在读字节的子程序中,每接收1个字节的数据就要发送1个应答信号(ACK),以示接收正常,否则主节点将停止继续发送。在现有的资料中,关于从节点的原理和源代码比较少,这里给出作为从节点时写字节子程序的源代码。由于篇幅有限其他的子程序没有列出。

  4  部分源代码

  本节是在MCU多主通信中的部分源代码。多主通信的实现中有几个难点和重点。一是在作为主节点时的写字节子程序,里面要包括发送的每位数据和总线的数据进行比较并做出判断。如果数据不同,要跳出并进入从节点的状态。由于子程序返回主程序时改变的只是PC的值而累加器(ACC)和工作寄存器(Ri)里面的值是不变的,因此MCU进入从机状态后继续接收总线剩下的数据,这样总线的数据并没有丢失。二是作为从节点时的写字节的子程序。由于时钟线是由主节点的MCU控制的,所以怎样根据SCL线来读取SDA线的数据是其中的一个难点。三是在具有子地址的从节点关于是写字节还是读字节时的判断。如果是写字节时主节点会给出新的起始信号,并再次发送从节点的地址数据。这时从节点需要做出判断是读取数据还是写数据,并进入相应的子程序。这里给出以上三个重点和难点的子程序的源代码,以供读者参考。这些源代码经实践证明都是正确的。

  主节点的写字节子程序:

  ;其中的NOP可根据时钟的快慢自己加减

  WRBYTE:MOV R0,#08H

  CLR BUSY;将BUSY值清零

  WLP:  RLC A;取数据位

  JC   WR1

  SJMP WR0;判断数据位

  WLP1: DJNZ R0,WLP

  NOP

  OUT1: RET

  WR1:  SETB SDA;发送1

  NOP

  SETB  SCL

  MOV  C,SDA;判断是否与发送的数据相同

  JC   GOON

  SETB  BUSY

  AJMP  OUT1

  GOON: NOP

  NOP

  NOP

  CLR SCL

  SJMP WLP1

  WR0:  CLR SDA;发送0

  NOP

  SCL

  NOP

  NOP

  NOP

  NOP

  NOP

  CLR

  SCL

  SJMP  WLP1

  从节点的写字节子程序(返回为ACK):

  SWRBYTE:MOV R0,#08H

  WAGAIN: RRC A

  MOV B,#37H

  WWAIT1: JB SCL,WWAIT1;等待SCL为低

  JC WR1;判断是发送“1”还是发送“0”

  SETB SDA;发送“1”

  AJMP COM

  WR1:  CLR SDA;发送“0”

  COM:  DJNZ R0,WWAIT2;判断是否发送完毕

  WWAIT3: JNB SCL,WWAIT3;发送完毕等待应答信号

  WWAIT4: JB SCL,WWAIT4

  WWAIT5: JNB SCL,WWAIT5

  CLR ACK

  JB  SDA,ST0

  SETB ACK

  ST0:  RET;返回

  WWAIT2: JNB SCL,WWAIT2;等待SCL为高

  SJMP WAGAIN

  从节点的读字节同时判断是否有起始信号的子程序。如果有起始信号,则转为写字节子程序:

  SRDBYTE:MOV R0,#08H

  SETB 20H;设置标志位判断是读还是写

  SETB SDA;释放总线

  RWAITJ: JNB SCL,RWAITJ;等待SCL为高

  MOV C,SDA;从总线上读取数据

  RRC A;存入累计器

  DEC R0

  MOV C,ACC.7;判断是否为起始信号

  JNC RWAITJ1;为低继续读取数据

  REWAIT: JNB SCL,RWAITJ1;开始判断是否为起始信号

  JB  SDA,REWAIT

  CLR 20H;是,则清标志位并返回

  AJMP SjRDOUT

  RWAITJ1:JB SCL,RWAITJ1;等待SCL为低

  RWAITJ3:JNB SCL,RWAITJ3;等待SCL为高

  MOV C,SDA

  RRC A

  DJNZ R0,RWAITJ2

  SjRDOUT:RET

  RWAITJ2:JB SCL,RWAITJ2;等待SCL为低继续读数据

  SJMP RWAITJ3

  5  总结

  根据总线协议中的仲裁原理,提出的基于延时比较的模拟I2C多主通信的方法,不仅能够体现了I2C总线的高效性,而且还具有良好的扩展性。它使普通不具有I2C接口的MCU可以应用在多主通信的系统中,既增加了普通MCU的使用范围,又突破了模拟I2C总线的应用局限性,为I2C总线的推广起到了积极的作用。

关键字:模拟I²C  I²C总线 引用地址:模拟I²C总线多主通信研究与软件设计

上一篇:一种基于Modelsim FLI接口的协同仿真技术
下一篇:模拟I²C总线多主通信研究与软件设计

推荐阅读最新更新时间:2024-05-02 21:23

普通IO口模拟IIC(I2C)接口通讯的程序代码
I2C总线是Philips公司提出的一种集成电路IC器件之间相连接的总线协议,其目的是使电子系统(不只 限于单片机系统)各个IC器件之间的连线变得容易。因为使用传统的并行总线在IC器件之间连接,往往会使得IC之间连线较多,显得非常复杂。而I2C总线 则使IC器件之间只需SDA、SCL两条连线就可以传送数据,因而十分方便。由于I2C在印刷体中不容易书写(需要上标),所以实际书写时,还常见到 IIC、I2C等书写方法,本文采用IIC的写法,敬请注意。关于IIC总线的知识,请参阅相关书籍,此处不再做进一步介绍。 下面我们用一个使用IIC总线连接器件的例子来简单说明IIC总线的仿真。 例.EEPROM24C02是采用IIC接口的一种常用2
[单片机]
普通IO口<font color='red'>模拟</font>IIC(<font color='red'>I</font>2<font color='red'>C</font>)接口通讯的程序代码
I2C总线通信接口的CPLD实现
    摘要: 介绍采用ALTERA公司的可编程器件,实现I2C总线的通信接口的基本原理;给出部分VHDL语言描述。该通信接口号专用的接口芯片相比,具有使用灵活,系统配置方便的特点。     关键词: I2C总线 CPLD VHDL I2C总线是PHILIPS公司开发的一种简单、双向二线制同步串行总线。它只需要两根线(串行时钟线和串行数据线)即可在连接于总线上的器件之间传送信息。该总线是具备多主机系统所需要的包括裁决和高低速设备同步等功能的高性能串行总线,应用极为广泛。 目前,虽然市场上有专用I2C总线接口芯片,但是地址可选范围小,性能指标固定,功能单一,而且使用不方便。针对I2C总线的电气特性及其通信协
[应用]
I2C总线学习感想总结(一)
一:起始与终止 1:I2C起始条件 SCL高电平期间,SDA从高电平向低电平切换。 2:I2C终止条件 SCL高电平期间,SDA从低电平向高电平切换。 二:数据传输 1:进行数据传送时,在SCL呈现高电平期间,SDA上的电平必须保持稳定 SDA上的数据只能在SCL为低电平期间变化。 2:I2C总线每个CLK发送或接收一个位的数据(或地址) 在CLK上升沿,把数据bit(或地址)送到SDA线上 在CLK下降沿,从SDA线上读取数据bit C程序实例: void Start_I2c() { SDA=1; _Nop
[单片机]
AT89S52单片机并行端口模拟I2C总线协议读写AT24C04的设计
I2C总线是2条线总线。数据线SDA,时钟线SCL.结构简单。 AT24C04是具有I2C总线接口的EEPROM.大小为512*8bit.单片机AT89S52本身不具有I2C总线结口,所以可编写程序用并行端口模拟I2C总线协议读写AT24C04. 多个设备通信的重点(1.电平的区别,如串口通信中PC与单片机通信,PC机串口电平值为+12V~-12V,单片机为TTL电平0V~+5V.,所以要用电平转换芯片转电平.2,通信协议。(串口通信协议))具体的协议内容与数据格式可查资料。 代码如下: #include #define WriteDeviceAddress 0xa0 #define ReadDeviceAddress 0
[单片机]
I2C之知(五)--I2C总线的10bit地址以及通用广播地址
其实,10bit地址我没用过,通用广播地址更没用过.通用广播地址应该是在多个mcu之间用i2c进行通信时使用的.虽说没用到,但还是做了翻译,说不定以后有机会用到: 10bit地址 10bit的寻址扩展可能寻址的数目.有7bit地址和10bit地址的设备可以连接到相同的I2C总线上,而且7bit寻址和10bit寻址都可以用在所有的总线速度模式下.不过,10bit寻址用的不多. 10bit的从机地址由开始条件(S)或重复开始条件(Sr)后的两个字节组成.第一个字节的前7位是1111 0XX,XX是10bit地址的最高有效位的前两位.第一个字节的第8bit是读写位,决定传输方向. 尽管1111 XXX有8种可能的组合,然后只有1111 0
[嵌入式]
(4)I2C总线的7bit从机地址
时钟拉伸(Clock stretching) clock stretching通过将SCL线拉低来暂停一个传输.直到释放SCL线为高电平,传输才继续进行.clock stretching是可选的,实际上大多数从设备不包括SCL驱动,所以它们不能stretch时钟. 从字节级来看,一个设备可能在快速模式下接受数据,但是需要更多的时间来存储接收到的字节或者准备将要传输的另一个字节.从机可以以一种握手的处理方式在接受和应答字节后将SCL线拉低来强制使得主机进入wait状态知道从机准备好下一个字节的传输. 从位级来看,I2C总线上的设备可以通过增长每一个时钟的低周期来降低总线时钟.所以每个主机可以适应这个设备的内部操作速率. 在Hs模式,
[单片机]
(4)<font color='red'>I</font>2<font color='red'>C</font><font color='red'>总线</font>的7bit从机地址
I2C总线通信接口的CPLD实现
    摘要: 介绍采用ALTERA公司的可编程器件,实现I2C总线的通信接口的基本原理;给出部分VHDL语言描述。该通信接口号专用的接口芯片相比,具有使用灵活,系统配置方便的特点。     关键词: I2C总线 CPLD VHDL I2C总线是PHILIPS公司开发的一种简单、双向二线制同步串行总线。它只需要两根线(串行时钟线和串行数据线)即可在连接于总线上的器件之间传送信息。该总线是具备多主机系统所需要的包括裁决和高低速设备同步等功能的高性能串行总线,应用极为广泛。 目前,虽然市场上有专用I2C总线接口芯片,但是地址可选范围小,性能指标固定,功能单一,而且使用不方便。针对I2C总线的电气特性及其通信协
[工业控制]
C51IO口模拟I2C总线驱动AT24C16 (I2C协议部分)
/* 名称:C51IO口模拟I2C总线驱动EEPROM(AT24C16) 说明:I2C总线是由Philips公司开发的一种简单、半双工同步串行总线。它只需要两根线(SCL、SDA)即可在连接于总线上的器件之间传送信息。其中SCL时钟总线用于同步数据,SDA数据总线用来发送数据(或地址)。 和SPI总线不同的是,I2C总线通过在SDL上发送存储器的地址用来选中总线上对应的设备。关于具体的通信协议这里就不说了,无非是通过IO口模拟产生所需信号 (如通信开始信号是SCL为高时,SDA产生一个下降沿信号。) 驱动程序中有 具体的说明。 */ //定义I2C相关变量 sbit SCL=P2^1; //I2C 时钟
[单片机]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved