基于STM32F1O5的CAN总线中继器的设计与实现

发布者:采菊东篱下最新更新时间:2011-08-12 关键字:CAN接口  控制单元  看门狗 手机看文章 扫描二维码
随时随地手机看文章

0 引言

CAN总线最初是为了解决汽车内部的信号传输问题而提出来的,目前广泛应用于工业现场控制单元、智能楼宇单元、矿业控制通讯、远程通讯节点等控制领域。受到CAN收发器的闲宣,总线上挂接的节点不能超过110个,两个节点间的最大通讯距离为10km,挂在总线上的节点要通讯必须具有相同的波特率。

为了能够在总线上挂接更多的节点,增加通信距离以及使具有不同波特率的节点或网络间进行通信,本文提出了一种使用具有双CAN口的MCU实现的CAN总线中继器。该中继器可大大缩短采用两个CPU时CAN接口的主从状态切换和CPU间通信的时间,提高系统的实时性。

1 CAN中继器硬件的设计

1.1 系统的硬件结构

本文设计的CAN总线中继器的系统框图如图1所示。此中继器以带有双CAN接口的STM32F105为核心,外围电路主要由光电隔离电路、DC /DC电路、CAN收发器、状态显示电路、波特率设置电路、ID设置电路和电源电路组成。光电隔离电路采用高速光耦将主控电路CPU的I/O口和收发器进行电气隔离,可消除总线上的噪声对主控电路的干扰;为了能使总线和主控电路完全的电气隔离,用DC/DC隔离电源单独对CAN收发器电路部分供电;状态显示电路指示当前各个CAN口的收发状态;波特率设置电路可分别设置两个CAN接口的波特率;ID设置电路可根据用户需求设置当前CAN中继器的ID;电源电路主要将输入的9~36V的直流电压转成5V和3.3V两种电压,分别给DC/DC电路和主控电路供电。CAN总线A上的各节点发送的信息经过CAN收发器将差分信号转换为TTL电平的报文,经过隔离后进入主控CPU,主控CPU将收到的CAN报文进行ID过滤后由另一个CAN接口经过光电隔离传送到另一路的CAN收发器,CAN收发器将TTL电平的报文转换为差分信号后发送到CAN总线B上。


图1 CAN总线中继器系统框图

1.2 STM32F105微控制器

STM32F105是基于突破性的ARM V7.0内核Cortex-M3的32位闪存微控制器,这是一款专为嵌入式应用而开发的内核。使用THUMB-2指令集,与ARM7TDMI相比,Cortex-M3内核要快35%,代码减少45%,大幅度提高了中断响应,而且所有新功能都同时具有业界最优的功耗水平。STM32F105具有双路CAN控制器,且内置CAN收发FIFO,可以降低采用外置CAN控制器的成本以及提高系统的稳定性。STM32F105具有较大容量的FLASH和RAM,以及丰富的外设,因此采用STM32F105作为主控电路的CPU可以方便地实现外部参数的设置,两个CAN口收发状态的转换,工作状态的显示等。

1.3 CAN收发电路及光电隔离电路

CAN收发器采用ST公司的L9616。终端匹配电阻采用跳线的方式供用户安装时自行选择。在差分信号线上并上瞬态抑制二极管,可以对L9616的I/O起到保护作用。光电隔离部分采用最高转换速率可达10Mbit/s的高速光耦6N137,电阻R2、R5起到限流作用。VCC5 1是由DC/DC隔离电源单独产生的5V电压。




1.4 电源电路及DC/DC电路

用开关稳压集成芯片LM2576代替传统的三段稳压器,仅需要极少的外围器件即可构成高效的稳压电路且不需加散热片。LM2576产生的5V电压供给光耦及DC/DC电路,主控CPU工作所需的3.3V电压由LDO芯片LM1117-3.3产生。分别给每一路CAN收发电路单独供电的DC/DC电路采用金升阳公司的BL0505-1W电源模块,使总线和主控电路实现完全的电气隔离。



1.5 波特率设置及ID设置电路

波特率设置电路由两个4位拨码开关构成,STM32F105通过读取每个波特率拨码开关的编码值确定每一路CAN接口的波特率,每一路CAN接口可以选择16种不同的波特率。由于两个CAN接口是通过内部进行通信,因此它们的ID可设置为相同的值,ID设置电路由4位编码的旋转编码开关构成,ID的值为编码开关的编码值加上0x190。

2 CAN中继器软件的设计

CAN中继器的主要作用是对接收到的CAN报文进行过滤转发。中继器的工作流程为:中继器上电时通过读取波特率设置电路和ID设置电路的状态,设置好波特率和ID值。初始化完成后,STM32F105通过监听两个CAN接口的中断完成数据的存储转发。当CAN接口A收到总线上的数据包时产生中断,中断处理程序根据标准标识符(StdId)和扩展标识符(ExtId)判断该数据包是标准帧还是扩展帧,同时将该ID值和ID过滤表中的值进行对比,若符合过滤条件则不转发,否则将数据包通过CAN接口B转发出去。

[page]

系统的主程序流程如图4所示。系统上电时先初始化时钟和端口,根据配置波特率设置电路和ID设置电路的状态配置好CAN接口的参数,打开CAN1和CAN2接口的接收中断。系统在主程序中不断扫描波特率设置电路和ID设置电路的状态是否有变化,若当前的读取值和上次的读取值不一样,则重新配置波特率和ID。CAN数据包的存储转发在中断服务程序中完成。为了避免系统若受到干扰死机后不能重启,因此需打开STM32F105的内置看门狗,看门狗的复位由芯片内部的滴答时钟每50ms喂狗一次。

 3 结束语

本文采用了采用双CAN接口的高性能的ARM处理器STMF105作为CAN中继器的主控CPU,可以很好地解决两个CAN接口的主从状态转换,具有结构简单、性能稳定、实时性高等特点,有一定的社会效益和广泛的推广价值。

 

关键字:CAN接口  控制单元  看门狗 引用地址:基于STM32F1O5的CAN总线中继器的设计与实现

上一篇:基于时间触发模式的汽车防盗方案
下一篇:浅谈车用传感器及其组件解决方法

推荐阅读最新更新时间:2024-05-02 21:32

基于单片机的CAN总线接口设计与实现
0 引言 CAN是ControllerAreaNetwork的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。现在,CAN的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。应用设计的CAN总线节点,系统上电复位后,CAN通信接口接收到PC机的数据后,便向总线上的各个节点传播。CAN总线上的节点与被控对象相连,当它接收到PC机的数据后,则对被控对象作相
[单片机]
基于单片机的<font color='red'>CAN</font>总线<font color='red'>接口</font>设计与实现
stm32 看门狗 BKP(HAL库)
(一)概述 stm32有两个看门狗:硬件看门狗(LSI 40KHz,时间精度不高)和窗口看门狗(APB1)。 (二)硬件看门狗实现代码 IWDG_HandleTypeDef hiwdg; // 硬件看门狗初始化 static void MX_IWDG_Init(IWDG_HandleTypeDef *pHiwdg) { pHiwdg- Instance = IWDG; pHiwdg- Init.Prescaler = IWDG_PRESCALER_4; pHiwdg- Init.Reload = 0xFFF; // Tout = ((4 * 2^prer) * rlr) / 40 = 409ms,看门狗
[单片机]
STM32独立看门狗IWDG与窗口看门狗WWDG研究
1.看门狗介绍 看门狗这东西虽然简单,但我相信绝大多程序员没有足够重视它。使用看门狗保证系统正常地运行是非常有必要的。我们在设计产品时,代码以及硬件设计缺陷或是外界电磁干扰都有可能使系统死机,如果不能正常对其进行复位,系统的可靠性将大打折扣。看门狗分为软件看门狗和硬件看门狗两类,其原理都是使用一个独立定时器来计时,超出时间就会产生复位信号,主要区别看是否具有独立的硬件结构,如果有,就是硬件看门狗,如果是一个普通定时器实现的那么就是软件看门狗。STM32F407片内有两个看门狗:独立看门狗IWDG以及窗口看门狗WWDG,下面来讨论各自的特点和用法。 2.IWDG的特点以及使用 IWDG是一个独立看门狗,具有独立于系统的时钟,与片
[单片机]
STM32芯片如何使用片内参考电压实现模拟看门狗
STM32芯片的ADC模块往往都支持模拟看门狗功能,即可以对单个或多个通道开启模拟转换值的监测。当模拟通道ADC值超出设定的阈值时可以产生模拟看门狗事件并可触发看门狗中断。【注:下面截图或数据都是基于STM32L4系列芯片的,其它STM32系列与其类似。】 结合上图,当选定的ADC通道的转换结果比设置的阈值上限还高或比设定的阈值下限还低时都可以通过硬件触发模拟看门狗事件或中断。 假设现有STM32用户有这样一个应用需求,他希望STM32的供电电压低于一定程度时就提示低压报警,然后软件将进行相关处理。 关于这个应用需求,我们就可以利用片内的一个参考电压和模拟看门狗来实现。 我们知道,STM32芯片内部都内置了一个比
[单片机]
STM32芯片如何使用片内参考电压实现模拟<font color='red'>看门狗</font>
汽车电子控制系统单元设计方案
摘要 为了满足下一代汽车电子控制系统单元的成本,PCB空间对高性能、高可靠性和高稳定性的要求有限。本文设计了一个16位的飞思卡尔MCU MC9S12XF512作为汽车电控系统单元的主控芯片。它以FlexRay总线技术为基础,针对车身布局和车身控制要求。本文详细介绍了汽车电控系统结构单元的设计,包括控制模块的主控芯片、FlexRay总线通信模块及其外围电路的硬件设计和软件设计过程。通过实际设计和开发,制作了多个汽车电控系统单元,并通过软件编程实现了基于FlexRay总线的通信测试。该设计的控制单元具有独立的总线控制器,可以方便地与其他ECU连接进行高速数据传输。 I.简介 如今汽车电子技术发展越来越快,传统的汽车总线系统已经不能
[嵌入式]
汽车电子<font color='red'>控制</font>系统<font color='red'>单元</font>设计方案
汽车辅助系统CAN总线接口电路设计
  总体方案设计   CAN 总线接口电路主要包括:单片机、控制器接口、总线收发器和看门狗电路等。采用Philips公司生产的SJA1000控制器和与其配套的 82C250CAN收发器。按照CAN总线物理层协议选择总线介质,设计布线方案,连接成CAN网络。双绞屏蔽线可设两套,在两套介质上同时进行信息传输,接收方只用一个介质。在冗余和非冗余段的连接临界点处进行总线切换。   硬件电路的设计主要是CAN 通信控制器与微处理器之间和CAN总线收发器与物理总线之间的接口电路的设计。CAN通信控制器是CAN总线接口电路的核心,主要完成CAN的通信协议,而CAN总线收发器的主要功能是增大通信距离,提高系统的瞬间抗干扰能力,保护总线,降低射
[单片机]
汽车辅助系统<font color='red'>CAN</font>总线<font color='red'>接口</font>电路设计
STM32中的独立看门狗IWDG
一. 简述STM32中的看门狗系统 STM32F10xxx内置两个看门狗,一个是IWDG(独立看门狗),一个是WWDG(窗口看门狗),两个看 门狗设备(可用来检测和解决由软件错误引起的故障。 当计数器达到给定的超时值时,IWDG会产生系统复位。而WWDG会触发中断。这篇文章主要讲解一下IWDG。 二. 关于 独立看门狗IWDG 1. 独立看门狗(IWDG)由专用的低速时钟(LSI)驱动,即使主时钟发生故障它也仍然有效。IWDG最适合应用于那些需要看门狗作为一个在主程序之外,能够完全独立工作,并且对时间精度要求较低的场合。 2. IWDG主要性能 自由运行的递减计数器 时钟由独立的RC振荡器提供(可在
[单片机]
Avr128 看门狗设置
在程序中有 WDR();即有喂狗时,程序只是执行while内的部分,因为在看门狗的计时还没到 时又重新喂狗,这是计数器重新还是计数。 在程序中没有WDR();即没有喂狗,程序在执行while内的部分到1s时,则看门狗复位启动, 看门狗饿死,系统从main重新执行。即系统每隔1s复位一次 在正常的程序编写中,应该加上喂狗WDR();以防止程序在其他的部分跑飞。 /********************************************** by ggl date:2007,12,26 goal:study the use of watchdog ***********************************
[单片机]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved