汽车应用中磁阻传感器系统的建模和仿真

发布者:码上奇迹最新更新时间:2011-10-26 关键字:磁阻传感器系统  汽车应用 手机看文章 扫描二维码
随时随地手机看文章

  磁阻效应支持汽车内的多种传感器应用。磁阻传感器主要用来测量机械系统的速度和角度。这样,磁阻传感器就成为电气元件、磁性元件和机械元件所组成的复杂系统的一部分。因为所有元件都会影响系统的反应,所以在规划系统及其操作时要非常重视对整个系统的仿真。下面重点讨论这种系统的建模和仿真。

  电子技术的应用日益广泛,对汽车的发展具有决定性的促进作用。未来的进一步发展也会在很大程度上由不断创新的电子元件驱动。传感器技术可检测车辆及其周围环境条件,因此具有特殊意义。有多种传感器系统可用于此类目的,例如加速度传感器、温度传感器或转矩传感器等。磁场测量传感器在汽车内尤其常见,主要用于机械变量的非接触式检测。通常这种传感器通过霍尔元件,或者基于各向异性磁阻 (AMR) 效应实现。与使用霍尔效应的解决方案相比,AMR 传感器有许多优点,例如抖动更少、灵敏度更高。但在提高准确性或降低整体系统成本方面,二者不分伯仲。除了在电子罗盘中利用磁阻传感器测量地球磁场之外,尤其是借助磁场指示机械系统的运动和位置时,可使用磁阻传感器确定角度和速度。防滑系统、引擎和传送控制都需要这种数据。产生磁场的永磁体的机械设计和选择会在很大程度上影响测量数据的获取。因此,在部署整个系统之前使用仿真技术进行深入分析非常重要,以确保达到目标功能并降低成本。因此,在前期开发过程中建立系统模型,之后用于支持后续产品的开发,对于解决设计过程中产生的这类问题也能发挥重要作用。下文将探讨新型速度传感器的整体系统建模和仿真。

  

 

  图 1 AMR 传感器系统包含两个封装

  

 

  图 2 各向异性磁阻效应

  信号检测

  现代传感器系统主要由两个元件组成 —基本传感器和信号处理专用集成电路 (ASIC)(图 1)。现已证明,后来由 Lord Klevin 于 1857 年发现的各向异性磁阻效应特别适用于检测磁场。首先考虑通常具有多种磁畴结构的铁磁性材料。这些称之为韦斯磁畴的结构,其内部磁化的方向彼此不同。如果将这种材料平铺为一薄层,那么磁化矢量处于材料层平面方向。另外,可较精确地假设只存在一个磁畴。当这种元件暴露于外部磁场中时,后者会改变内部磁化矢量的方向。如果同时一股电流通过该元件,就会产生电阻(图 2),这取决于电流和磁化之间的角度。当电流和磁化方向彼此成直角时,电阻最小,当二者平行时,电阻最大。电阻变化的大小取决于材料。铁磁性材料的性质也决定对温度的依赖性。电阻最大变化为 2.2% 并且对温度变化反应良好的最佳合金是 81% 的镍和 19% 的铁组成的合金。恩智浦所有传感器系统中的基本传感器都采用这种强磁铁镍合金。在惠斯登电桥电路中单独配置几个 AMR 电阻,以增强输出信号并改善温度反应特性。此电路也可在制造过程中进行微调。图 3 显示如何在裸片上配置 AMR 元件。

  确定速度的装置多半由两个组件组成:编码器轮和传感器系统。编码器轮可以是主动式或被动式。主动轮已磁化,因此 MR 传感器可检测北极和南极之间的变化。如果是被动轮,则由一种齿状结构代替磁化。如图 1 所示,传感器头上也必须有一块用于产生磁场的永磁体。接下来,我们只讨论因公差极小而著称的被动编码器轮。当传感器对称地面对一个齿或者被动轮两齿之间的空隙时,这不会使 AMR 元件的磁化矢量产生任何偏斜。忽略外部噪声场并考虑桥电路时,输出信号获得零值。然而,如果传感器头处于齿边缘前面,则磁输入信号达到极值。齿/空隙或空隙/齿切换类型的函数结果与磁输入信号正弦曲线的最小值或最大值非常接近。

  信号处理

  为了确定速度,将磁输入信号编码处理为电脉冲序列,而且通常通过 7/14 mA 协议传送。在最简单的情况下,可使用比较器产生脉冲序列。通常会向比较器电路添加磁滞以消除低噪声的影响。然而,这种施密特触发器在噪声水平较高的条件下不能确保其功能性。例如,传感器头和编码器轮之间空隙出现显著波动会导致磁输入信号振幅发生波动。如果振幅变得很小,甚至不再超过或低于磁滞临界值,则不管编码器轮的位置如何,输出信号都保持其有效工作时的最后状态。在检测 ABS 系统中的转速时,传感器和编码器轮之间的距离可能会出现这种变化。当存在负载变化(例如突然转向动作),横向作用于轮上的离心力会在轮轴上产生弯曲力矩。这将改变安装在与传感器相关的轴上的编码器轮的位置,这些传感器是与轮悬架相结合的。

  磁位移也会影响系统的正常运转。例如,噪声场可使实际测量信号加强或减弱,致使施密特触发器的临界值被高估或低估。然而,位移不仅是由外部场引起的。被动轮极高的速度可使轮中产生涡流,而这又会产生磁噪声场。所产生的位移会影响操作的可靠性。

  为消除此噪声对输出信号的影响,另一封装中装入了信号处理专用集成电路(ASIC)。后者也包含一个线路驱动器,以便为信号处理和高电压接口提供电源电压(图 1)。图 4 所示为信号处理架构。用于故障排除的中心元件为包括调式放大器、偏移抵消电路和智能比较器。根据传感器和编码器轮之间的距离,可调式放大器可以与信号级匹配。对于偏移抵消电路,有一种控制系统(与高通滤波器不同)可消除偏移,同时将系统频率保持为 0?Hz。否则,就不可能检测到停止不动的编码器轮。智能比较器的临界值是可变的,并且可设置,使磁滞处于信号振幅的 20% 和 45% 之间。这可确保充分抑制噪声,而且振幅突降达 50% 也不会影响系统的正常运转。模拟前端的个别组件控制则通过数字接口实现。所述系统均利用仿真技术开发和验证。下文将概略介绍系统开发,同时阐述如何使用模型来改进设计。

  

 

  图 3 裸片上的 AMR 元件配置

  

 

  图 4 现代速度传感器的信号处理原理 [page]

 

  图 5 网格 — 磁场有限元模拟的起点

系统仿真

 

  要开发传感器系统,首先必须对预期的磁输入信号有一个总体了解。首先要了解编码器轮和传感器头上永磁体的标准规格,以及预期尺寸和公差。通过 ANSYS 方法进行 FEM 仿真可确定磁场。这里就有对编码器轮、传感器元件和磁体进行建模的问题(图 5)。然后便可根据传感器元件和编码器轮之间的距离,确定与之呈函数关系的磁场强度。图 6 是传感器桥上的磁输入信号与距离呈函数关系的三维图示。很容易看出输入信号呈正弦曲线,信号振幅随距离增加而明显减小。除了距离之外,位置偏离也会导致振幅减小。例如,如果传感器头不在编码器轮前面的中心位置,那么信号振幅也会减小。根据 FEM仿真方法,这样也可将机械规范转化成预期磁变量。与气隙变化不同,倾斜会导致偏移,这同样会影响系统的正常运转。FEM 仿真也可以预估其造成的影响(图 7),而且结果可直接转化为可容许的位置公差。

  确定磁场之后是传感器系统仿真。AMR 元件的电阻变化是各向异性磁阻效应的直接结果。这样,磁场仿真的结果会导致代表信号处理中输入信号的电阻发生变化。对模拟前端进行建模可采用 Simulink。这种行为模型是概念设计的产物,标志着产品开发的起点。每个 Simulink 块对应一个模拟信号处理组件,例如放大器或过滤器。但是,尚未考虑模拟组件的控制部分,这由数字系统实现。HDL 设计则仿真通过数字方法实现的功能,而且在完成产品开发之后就会最终成形。因此,整体系统仿真是 Simulink 对模拟组件的行为模型以及 ModelSim 对 HDL 设计的共同仿真(图8)。可通过仿真从概念阶段顺利过渡到 HDL 设计及后续阶段。在共同仿真中,可用 ModelSim 中部署的 Verilog 代码逐渐代替 Simulink 参考模型,从而可逐项验证 HDL 设计。可持续进行此过程,直到在 Verilog 中实现整个数字部件,而模拟系统部件仍保持为 Simulink 模型。此工具组合也已证明对 IC 评估同样有用。自始至终使用这种工具可以更容易理解 IC 行为,并可创建用来分析和解释任何错误的框架。这些工具的主要好处在于,能够更快速、更准确地答复客户的查询,以及更好地了解与环境条件相关的传感器功能。

  

 

  图 6 与传感器头和编码器轮间距离呈函数关系的磁输入信号模拟

  

 

  图 7 为确定可容许的位置公差而进行的磁场计算

  

 

  图 8 模拟前端和数字块的共同仿真

[page]

  结论

  通过此项建模,可以分析与输入信号呈函数关系的系统行为。图 9 中的第一张图表显示通过改变传感器和编码器轮之间的距离而产生的磁输入信号。此信号是有限元件仿真结果,之后 AMR 效应可将此信号转化成传感器桥的电输出信号。中间的图表是模拟信号处理的结果。下面一张图表显示输出信号。此器件使用 A 7/14/28 mA 协议。这种协议可用来传送额外信息,例如感测旋转或气隙长度。除了这些结果之外,也可以检查数字控制的运行情况。图 10 显示的是 ModelSim 中的信号图象实例。

  通过MATLAB 进行仿真控制并结合其他仿真器可创造更多选择。首先,例如可使模拟自动化。然后可以使用大量算法在 MATLAB 中进行信号仿真。例如,对所需系统和信号参数进行蒙特卡罗 (Monte Carlo) 仿真,随后进行自动化分析。通过 FEM 仿真器(例如 NASYS),可以扩展所仿真的系统组件,甚至包括 MR 传感器头和相关编码器,从而将系统视图扩展到传感器周围直接相关的区域。图 11 显示的是用于此目的的整个工具链。

  

 

  图 9 模拟结果:电输出信号比对磁输入信号

  

 

  图 10 数字系统元件的仿真

  

 

  图 11 完整的仿真链

  总结

  许多汽车应用中都采用基于 AMR 效应的现代智能传感器。对传感器系统的要求自然会因应用而异。在部署整个系统之前先进行系统仿真可确保各项功能符合规范。假设发现磁变量、机械变量和电变量之间存在复杂的相互影响,只用一件简单的仿真工具不能解决问题。此时需要结合使用不同工具,每件工具都是针对特定任务的最佳解决方案。因此使用磁场仿真器来确定磁输入信号,同时Simulink对模拟输入进行仿真。HDL设计之后对模拟部件进行数字控制仿真。最终整个系统实现全面仿真。建模已成为预开发的一部分,并随着产品开发的进程不断优化改进。最后就会得到经过验证确认符合产品规范的设计,以及可用来解决后续问题的模型,作为市场支持的一部分。

 

 

关键字:磁阻传感器系统  汽车应用 引用地址:汽车应用中磁阻传感器系统的建模和仿真

上一篇:基于加速度计的汽车动力学参数采集平台设计
下一篇:汽车电路保护器件在设计上的考虑

推荐阅读最新更新时间:2024-05-02 21:40

机械式压力开关在汽车空调中的应用
压力开关安装在汽车空调制冷剂循环管路中,检测制冷循环系统的压力,当压力异常时启动相应的保护电路,防止造成系统的损坏。常见的压力开关主要有高压开关、低压开关、双重压力开关和三重压力开关等。 1. 高压开关 汽车空调在使用中,当出现散热片堵塞、冷却风扇不转或制冷剂过量等不正常状况时,系统压力会过高,若不加控制,过高的压力会损坏系统元件。 高压开关安装在高压管路中,一般装在储液干燥器上,串联在压缩机电磁离合器电路或冷凝器风扇电路中。当系统压力过高时,高压开关动作,切断离合器电路或接通冷却风扇高速挡电路,防止压力继续升高,避免造成系统的损坏。 高压开关有两种类型:常开型和常闭型,其结构如图5-5所示。常开型高压开关串联在冷
[嵌入式]
汽车图像传感器应用
近年来,在政府对汽车安全法令的贯彻和实施、消费者驾乘体验及自动驾驶的趋势推动下,汽车图像传感器领域呈爆发式增长。汽车图像传感有着广泛的应用领域,具有卓越性能和先进的图像处理能力的图像传感器在提高行车安全的同时还提升用户驾乘体验,成为近年来汽车领域的炙手可热的技术。预测显示,2014-2018年间汽车CMOS传感器市场的收入年复合增长率(CAGR)将达到28%。下面就随汽车电子小编一起来了解一下相关内容吧。 汽车图像传感器主要应用领域 汽车图像传感器的应用非常广泛,包括用于视觉应用如倒车影像、前视、后视、俯视、全景泊车影像、车镜取代,用于车舱内如乘客监控、疲劳驾驶监测、仪表盘控制、行车记录仪(DVR)、气囊,用于先进驾驶辅助系统
[汽车电子]
<font color='red'>汽车</font>图像<font color='red'>传感器</font>的<font color='red'>应用</font>
2017 TI汽车应用处理器系统方案展示会顺利举行
北京2017年4月21日电 /美通社/ -- 德州仪器(TI)(NASDAQ: TXN)2017汽车应用处理器系统方案展示会日前正式在上海落下帷幕。在上海、重庆、北京、长春、惠州、广州及深圳等七个城市的巡回展示中,TI凭借来自2017国际消费电子产品展(CES)中最新的汽车电子解决方案,为参展者呈现了一场汽车娱乐导航,数字化仪表和先进辅助驾驶系统解决方案的视觉盛宴。此外,德州仪器中国区嵌入式产品系统与应用总监蒋宏也亲临会场,与参会者们一同介绍了TI在汽车领域的创新产品和领先技术解决方案,并针对汽车电子的未来发展进行了深入的交流与讨论。 汽车信息娱乐系统(Infotainment) 和 高级驾驶员辅助系统(ADAS) 的蓬勃发展
[汽车电子]
电动汽车分布式电机驱动测试系统研究与应用
1 引言   随着能源和环境问题日益受到重视,电动汽车以其清洁无污染、能量效率高、低噪声、能源多样化等优点研究发展迅速。电动汽车作为一种交通工具,工作环境复杂多变,其电机驱动系统需要满足可靠性高、效率高、调速性能好、造价低等性能要求。因此电动汽车的电机驱动系统测试是一项重要研究内容。   电机驱动系统包括电机及其控制器,系统测试中需较长时间采集驱动系统内部和外部的信号,用到多个测量仪器,输出大量数据。电动汽车电机驱动系统研究的深入对其测试的效率和精度有了更高的要求,传统的手工测试方法已无法满足试验需求。随着计算机技术、通信技术和自动控制技术的发展,以PC机和工作站为基础的虚拟仪器和分布式网络化测试技术为主的现代化开放式测试系
[测试测量]
电动<font color='red'>汽车</font>分布式电机驱动测试<font color='red'>系统</font>研究与<font color='red'>应用</font>
共同打造碳化硅在新能源汽车应用
碳化硅器件(SiC)在新能源汽车领域对传统硅基(Si-)IGBT的替代正在加速。自2018年特斯拉在Model3中首次将IGBT模块替换成SiC模块后,就有越来越多的新能源厂商开始在电驱中使用SiC器件。 全球新能源汽车头部厂商们均已开始采用SiC。目前,比亚迪汉EV、比亚迪新款唐EV、蔚来ES7、蔚来ET7、蔚来ET5、小鹏G9、保时捷Tayan、现代ioniq5等众多车型,均已在电驱中采用碳化硅功率器件。 近日,深圳欣锐科技与美国安森美成立联合实验室,计划通过对核心功率器件,尤其是SiC应用技术的先期研究,为新能源汽车车载电源提供技术支持与保障。 与此同时,双方还可通过联合实验室建立有效的合作平台,整合双方优势资源
[嵌入式]
共同打造碳化硅在新能源<font color='red'>汽车</font>的<font color='red'>应用</font>!
赫千科技 开拓应用汽车的全光网络通信架构
随着汽车技术的不断向前发展,用户对汽车的智能化、自动化、网联化的需求也在不断提升。毫无疑问,拥有良好用户体验的汽车将赢得购车用户的追捧,促使汽车制造商不断增加新的服务以满足用户的需求,而不断增加的服务实施需要大量的ECU安装车内以完成预设功能,这些ECU将会增加网络端口数量和车内传输的数据量,海量的数据传输使得传统的车载通信总线无法满足要求。现阶段,尽管车载以太网总线已经被应用于车内进行数据传输,但是车载以太网总线的传输带宽仍然是100Mbps,最大传输不超过1Gbps,其传输媒介仍然采用铜。然而,伴着在ADAS、自动驾驶、车载娱乐的全面发展要求更多传感器接收越来越多的低延迟和确定性的数据传输、高分辨率视频流量的传输以及5G 等更
[汽车电子]
赫千科技 开拓<font color='red'>应用</font>于<font color='red'>汽车</font>的全光网络通信架构
ADI演绎“模拟无处不在”理念,看好中国3G、汽车电子和医疗应用
“模拟无处不在”是ADI在本届IIC-China上的宣传口号。鉴于模拟产品种类和数量繁多,这次展示ADI采用了多媒体方式,通过嵌在若干圆柱上的平板电视,循环播放该公司的高性能模数转换器、放大器产品以及电源管理器件、RF IC、DSP、微机电(MEMS)产品以及相关应用方案(如3G基站、智能电话、低成本基本蜂窝电话、音视频播放设备、RF和微波设备等),每个圆柱下的吧台上都安排有技术人员负责解答与会工程师的问题。 全球模拟IC增长情况。 电源管理器件是ADI最新切入的模拟IC领域,目前推出了散热管理器、温度传感器、闪光驱动、电荷泵电路等。尽管竞争对手林立,但该公司模拟半导体元器件市场总监Mark
[焦点新闻]
新型汽车天线系统结构、原理及应用指南
编者按:今天要介绍的,是汽车的一个部件,它就像是幽灵,有时出现在醒目的位置,有时无迹可寻;有些长了一副它该长的样子,另一些像是设计师宿醉的杰作。如果在过去,你一定会说它无足轻重,但放眼未来,尤其在自动驾驶领域,它必将扮演举足轻重的角色。   今天要介绍的是--新型汽车天线系统。   感谢电子通讯技术的发展,如今的汽车天线,已经脱离了当年笔直的外观限制, 进化 出了各种不同的外形和功能,它们也不再局限于收听广播,而是涵盖了无线遥控、GPS以及4G上网等多种功能。随着5G时代的临近,各种新技术很可能彻底颠覆现有汽车驾驶概念,所有这些新技术,包括车对车通讯,汽车AI等等,都离不开汽车与外界的通讯,而作为这条通讯生命线的唯一硬件基础-
[汽车电子]
新型<font color='red'>汽车</font>天线<font color='red'>系统</font>结构、原理及<font color='red'>应用</font>指南
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved