高能效比电容供电电路实现

发布者:Turquoise最新更新时间:2011-11-04 关键字:高能效比  供电电路 手机看文章 扫描二维码
随时随地手机看文章

  从设计角度看,超级电容和电池的根本区别在于电容器在充/放电周期发生的显著电压变化。充电时,理论上,电容器的电压从零上升到其最高额定电压,而电池的端电压在其工作周期中变化很小。超级电容是电子电容器的一个子集。可通过下式得出能从超级电容放电周期中(放电周期是指电容器的端电压从其最大值VMAX变为最低工作电压VMIN的过程)获得的有效能量EEFF:

  EEFF = 1/2 × C × ( V2MAX – V2MIN) (1)

  相应地,有效能量比(EER)可定义为:

  EEFF/ EMAX = 1–(VMIN/VMAX)2 (2)

  其中EMAX代表电容器存储的总能量。等式2明确表明,随着我们通过减少电容器内的驻留电能,而降低了被供电电路的最低工作电压VMIN,有效能效比可获得极大地提升。对任何以电容供电的电路来说,能效比都是一个非常重要的设计考虑。

  

 

  当电路内电子器件的最低工作电压VMIN从3.6V降为1V时,能效比从48%提高到96%。因此,对于电容供电电路的设计来说,“挤压器件的工作电压”是首先要考虑的问题。

  使用超低功率DC/DC升压转换器(如参考文献2所述的无电感型转换器,其工作电压可低至0.7 V)可实现该目标,但它可能会增加设计成本和功耗。另一种选择是使用针对超低电压器件工作而研制的专用设计技术。

  参考文献3介绍的就是这样一种低压电路设计的好例子。建议采用的微功率、超低电压、全频、无二极管整流器就非常适合电容供电的电路(图2)。

  

[page]

  图2:最简单的无二极管精精密全波整流器采用单个轨至轨运算放大器和三个匹配的电阻。

  为把握电路的工作原理,请务必注意:运算放大器工作在单电源模式。若将正信号加到输入端(VIN> 0),运算放大器的输出就变为零,此时整个电路实际上转变成一个简单的由三个电阻(R1、R2和R3)串联的无源网络。当输入信号为负时,运算放大器恢复“正常线性状态”并作为常规反相放大器工作。为产生对称的正半波和负半波输出,R1、R2和R3的值必须要满足如下条件:

  R1 × R3 = R2 × (R1 + R2 + R3) (3)

  在满足等式3的条件下,电路在点2具有1/2的增益。可添加一个增益为2的非反相放大器以得到一致的整体增益,从而实现工作等式VOUT=|VIN|。

  该电路具有一定局限性:其正负半波的输入阻抗不同。理论上,正半波的阻抗是R1+R2+R3,而负半波的仅为R1。此外,运算放大器的输入寄生电容(CP)会影响交流工作模式,尤其是在高频范围。(交流性能的详细分析远远超出了本文范围。我建议在实际设计中采用Spice仿真)。

  

 

  该电路可采用多种轨至轨微功率运算放大器,例如:美国国家半导体的双LM*2(VMIN= 1.8 V);美信集成产品的双MAX 4289(VMIN=1.0V);或相似类型的产品。

  由于典型的硅二极管具有约0.6V的正向压降,因此其输出动态范围要从电源电压中减去这0.6V。在构建电容供电电路(其中电路电源电压应尽可能的低)时,这一考虑已变得相当重要。基于这个原因,建议采用的无二极管设计方案更适合电容供电模式。它节省了宝贵的0.6V电压(考虑到运算放大器可工作在1V的这种可能性,0.6V的确非常有价值),从而降低了电路的最低工作电压,进而提高了方案的整体能效比。

 

关键字:高能效比  供电电路 引用地址:高能效比电容供电电路实现

上一篇:高能效比电容供电电路实现
下一篇:智能跟踪控制系统的动画仿真设计

推荐阅读最新更新时间:2024-05-02 21:41

用于无线鼠标的无接触供电电路
目前广泛使用的无线鼠标采用电池供电。更换电池给用户带来不便。在此给出一种适用于 无线鼠标 的无接触供电(Contact-less Power Transfer,CPT)电路,它包括无接触供电初级电路和次级电路2部分。供电装置采用USB供电,电压为5 V,通过自激振荡电路产生138 kHz左右的高频振荡电压,经鼠标垫内置的无接触耦合初级载流线圈L31输出。无线鼠标内置次级载流线圈L32,它采用无接触感应耦合方式获取电能,再由MC34063集成稳压芯片构成BUCK稳压电路,负载电压为3.1V。 1 无接触供电电路原理 图1为无接触供电电路原理图。分裂电感L21,L22和功率开关管Q1,Q2构成自激推挽式变换器电路,每一个开关管的控
[电源管理]
用于无线鼠标的无接触<font color='red'>供电电路</font>
恩智浦蓝牙音频SoC助力全球高能的无线助听器
恩智浦半导体(纳斯达克代码:NXPI)和助听器制造商之一Widex宣布携手合作,共同开发和测试恩智浦NxH2003蓝牙低功耗(BLE)音频SoC,并将其集成到Widex BEYOND™助听器中。两家公司在整个产品开发周期期间紧密合作,将一流的助听工程和无线音频半导体技术融为一体,打造可以从iOS设备传输无线音频的助听器,1.2 V时的电流消耗只有2.8 mA,实现业内最佳功耗,延长了终端用户直接欣赏个人设备中的音乐的时间。 Widex首席执行官Jørgen Jensen表示:“Widex一直以低功耗闻名业界。集成恩智浦的NxH2003技术意味在支持耗电的蓝牙传输应用的同时,我们仍能实现低功耗。与竞争对手的助听设备相比,我们的传输时
[医疗电子]
高能电容供电电路实现
  从设计角度看,超级电容和电池的根本区别在于电容器在充/放电周期发生的显著电压变化。充电时,理论上,电容器的电压从零上升到其最高额定电压,而电池的端电压在其工作周期中变化很小。超级电容是电子电容器的一个子集。可通过下式得出能从超级电容放电周期中(放电周期是指电容器的端电压从其最大值VMAX变为最低工作电压VMIN的过程)获得的有效能量EEFF:   EEFF = 1/2 × C × ( V2MAX – V2MIN) (1)   相应地,有效能量比(EER)可定义为:   EEFF/ EMAX = 1–(VMIN/VMAX)2 (2)   其中EMAX代表电容器存储的总能量。等式2明确表明,随着我们通过减少电容器内
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved