0 引言
直流无刷电机实际属于永磁同步电机,一般转子为永磁材料,随定子磁场同步转动。这种电机结构简单,而且由于移去了物理电刷,使得电磁性能可靠,维护简单,从而被广泛应用于办公自动化、家电等领域。直流无刷电机的运行过程要进行两种控制,一种是转速控制,也即控制提供给定子线圈的电流;另一种是换相控制,在转子到达指定位置改变定子导通相,实现定子磁场改变,这种控制实际上实现了物理电刷的机制。因此这种电机需要有位置反馈机制,比如霍尔元件、光电码盘,或利用梯形反电动势特点进行反电动势过零检测等。电机速度控制也是根据位置反馈信号,计算出转子速度,再利用PI或PID等控制方法,实时调整PWM占空比等来实现定子电流调节。因此,控制芯片要进行较多的计算过程。当然也有专门的直流无刷电机控制芯片,但一般来说,在大多数应用中,除了电机控制,总还需要做一些其他的控制和通信等事情,所以,选用带PWM、同时又有较强数学运算功能的芯片也是一种很好的选择。
ADI的数字信号处理器ADMCF34X系列整合了通用数字信号处理器快速运算功能和单片机外围丰富的特点,使得该系列特别适合于那些要求有较强的数据处理能力,同时又要有较多控制功能的应用中,对直流无刷电机的控制就是这一系列DSP的典型应用之一。
1 ADMCF340芯片简介
ADMCF340集成了一个20 MIPS定点DSP内核和一整套外部接口。其中的DSP是完全与ADSP-2100系列数字信号处理器兼容的,这为熟悉ADSP-2100系列的用户使用该控制器带来了便利。
ADMCF340包括一个三相16位基于中心点脉宽调制(PWM)发生器,可编程脉宽调制,脉冲分辨率达50 ns,可编程窄脉冲检测,最低开关频率可至153 Hz,双/单脉冲工作时间更新方式控制,死区可编程控制器;13个模拟输入通道,高达12位的分辨率;3个双极性模拟电流Isense输入引脚,并具有可编程采样和保持放大器以及过电流保护;两个可用于模拟量输出的辅助PWM输出通道;25个引脚数字输入/输出I/O口,均可独立配置成中断源输入,可用于捕捉直流无刷电机的换相。
2 控制系统的硬件结构
对BLDC电机的控制可分为两个分立的过程。
第一,保持转子和定子磁场同步;第二,控制定子的电流值。这两个过程都要经过逆变器实现。磁场同步信号来自于位置传感器,根据转子的位置DSP处理器决定适当的晶体管的导通。
电流控制一般采用PWM模式,根据电流误差信号调节PWM信号的占空比。因此,电流值和电流的变化率都可以被控制。电流取样电路仅用一只串联取样电阻即可完成。如图1所示,其阻值由电机的最大电流决定,即分压电阻上的最大压降不超过0.5 V。图1中RC电路有两个作用,一是滤掉换相噪声,二是滤掉斩波噪声。
[page]
3 控制系统的软件结构
对于直流无刷电机的控制,软件上的内容是主体。本文中三相直流无刷电机采用PID算法实现全数字双闭环控制。即给定转速与速度反馈量形成偏差,即速度调节后产生电流参考量,它与电流反馈量的偏差经电流调节后形成PWM占空比的控制量,实现电动机的速度控制,如图2所示。
软件主要包括两个模块,初始化模块和运行模块。初始化模块只在电机启动时执行,运行模块式一个等待循环,等待PWM中断和换相中断。等待循环中也可写入用户控制程序。总体结构如图3所示。每一个PWM周期都产生中断请求,并读取1次A/D转换的结果。中断服务流程如图4所示。由变量PWM_count进行中断计数。每四个中断进行1次PWM脉宽调节。PWM中断服务程序执行需要30个CPU周期,大约1.5μs。
直流无刷电机的换相由捕捉中断子程序完成。在捕捉中断子程序中完成了速度计算、读取换相控制字和换相操作。
4 结语
ADI的数字信号处理器ADMCF34X系列凭借着较强的数据处理能力和强大丰富的外围,尤其是25个可独立配置成I/O口或中断的PIO口、PWM调制以及13路12位ADC等模块,非常适用于直流无刷电机控制这样的实时应用中。后台方式控制算法的反应速度快,代码量少,在直流无刷电机等控制过程不很复杂,但对于实时性要求较高的场合,有比较好的特性。
关键字:永磁无刷直流电机 DSP控制器 ADMCF340芯片 电机控制
引用地址:
基于ADMCF340的永磁无刷直流电机控制系统设计
推荐阅读最新更新时间:2024-05-02 21:45
高效、无传感器电机控制的无代码实现
运动控制应用的设计人员面临着优化性能和效率同时将组件数量和空间保持在最低限度的压力。理想的情况是对这些应用中使用的永磁同步电机 (PMSM) 进行无传感器控制,但这种控制很复杂,并且传统上需要广泛的设计和编码技能来开发适当的算法。 近年来,已经引入了数字IC技术,以减轻设计人员的编码负担。随着先进半导体控制器和支持工具的最新发展,现在可以实现复杂的无传感器控制方案,而无需编写任何代码。 一般来说,PMSM 与其他电机类型相比具有多项优势。没有换向器使 PMSM 比直流电机更可靠。通过使用永磁体产生转子磁通量,PMSM 比需要磁化和定子电流的交流感应电机更有效。因此,PMSM 可以在家庭、工业、汽车和航空航天应用中找到。典型
[嵌入式]
基于DSC的数字PFC和电机控制解决方案
当IEC31000-3-2在2001年变成强制标准时,很多公司开始在设计中考虑采用 功率因数校正 ( PFC ),这些产品包括照明设备、便携式工具、所有的电子设备、消费产品、家用电器和工业设备等。该标准克服了注入公用主供电系统的谐波电流限制,适用于每相位拥有高达16A的输入电流的电气及电子设备,其目的是连接公用低压配电系统。 如果不采用PFC,那么典型开关模式电源的功率因数约为0.6,因而会有相当大的奇次谐波失真(第三谐波有时和基本谐波一样大)。令功率因数小于1以及来自峰值负载的谐波减少了运行设备可用的实际功率。为运行这些低效率设备,电力公司必须提供额外的功率来弥补损耗。功率的增加将导致电力公司使用负载更重的供电线路
[工业控制]
设计高性能低功耗三相无刷直流电机控制系统
如今,工程师将电机控制系统用于数字与模拟技术来应对过去面临的挑战,包括电机速度控制、旋转方向、漂移及电机疲劳等。微控制器 (MCU) 的应用为当代工程师提供了动态控制电机动作的机会,从而使其能够应对环境压力和状况。这有助于延长操作寿命并减少维修,从而降低成本。目前,电机制造商倾向于制造三相 BLDC 电机。原因在于 BLDC 电机 不直接接触换向器和电气终端(有刷电机直接接触),因而不仅可降低功耗增加扭矩,同时还可延长操作时间。遗憾的是,与有刷直流或交流电机相比,三相电机控制装置更加复杂。此外,数字与模拟组件之间的关系变得非常重要。
本文将简要探讨在三相 BLDC 电机应用中使用模拟组件和微控制器时应考虑的问题。同时还将重点介绍
[嵌入式]
基于模型的设计简化嵌入式电机控制系统开发
本文描述了围绕基于ARM的嵌入式电机控制处理器构建的基于模型设计(MBD)平台的详细情况。 随后,本文提供最初部署的基本永磁同步电机(PMSM)控制算法示例,并介绍了方便的功能扩展,以包含自动化系统的多轴位置控制。 长期以来,系统和电路建模一直是电机控制系统设计的重要方面。 采用MBD方法后,电气、机械和系统级模型用于在构建和测试物理硬件前评估设计概念。 MathWorks最新的仿真工具可以对完整的嵌入式控制系统进行建模,包括电气电路和机械系统领域。 同时,嵌入式编码工具从控制系统模型生成C语言代码,将控制算法部署在嵌入式控制平台上。 这些工具实现了基于模型的设计过程,人们可以在最终硬件测试前先在仿真平台上进行设计并完全测试。 成
[单片机]
备战工业4.0,意法半导体将如何出牌?
说到工业4.0,很多业内人士是既为之欣喜,又为之焦急。欣喜之处自不必多说,而焦急之处便在于中国目前的发展状况尚且复杂,工业3.0甚至工业2.0的烙印尚不知何时褪去。
笔者认为,无论我们的应对是否积极,国家的方向一定会是刚硬的,只是战线可能会拉得很长,资源的分配也不见得均等。而当国内外的企业纷至沓来,积极的厂商总是愿意创造资源或机会,给市场带来一些刺激。
很多人知道,电机控制部分的能耗几乎占据了全球工业应用总能耗一半,可以说能够打败这只电老虎的厂商就已经成功了一半。
意法半导体(ST)大中华与南亚区工业应用与功率分立器件产品部战略计划和业务开发总监Allan Lagasca表示,ST在电机控制领域
[嵌入式]
基于51单片机的电机控制系统设计
O 引言 电机控制在监控器材、医疗器械、电动阀门、电动窗帘、家用电器、旋转灯具等方面有着广泛的应用,因此设计一款可控性好、精度高的电机控制系统是一件非常有意义的事。本文介绍的基于AT89S52单片机的电机控制系统的软硬件设计,在按键的操作下对时间进行设定,控制电机的转动,对工作状态及时间进行显示。 1 设计方案说明 该系统先通过按键对电机的正、反向(即顺时针、逆时针)转动时间分别设置,时间显示在LCD上,格式为时:分:秒(通过改变程序可以选择不同的格式)。采用倒计时方式,正向时间完毕,立刻开始反向转动时间计时,反向时间结束,自动恢复到初始设定的时间。 时间设定完成后,按下开始键,正向转动时间开始计时,电机工作指示灯闪
[单片机]
儒卓力系统解决方案全新RDK4:适用于紧凑型电机控制单元的车规级硬件
RDK4结合先进的组件以缩短预研阶段 儒卓力系统解决方案提供全新车规级硬件RDK4,扩展了儒卓力基础板和适配器板产品组合。RDK4将微控制器、系统基础芯片和最重要的汽车接口CAN FD和LIN结合在细小空间,支持电机控制单元的开发。因此,汽车OEM或一级厂商开发部门无需费力自行设计合适的硬件,而是可以直接借助RDK4测试和实施电机控制单元的应用。为此,英飞凌在ModusToolboxTM开发环境中集成了RDK4,并提供软件示例。RDK4的特性和功能适合广泛的应用范围,能够帮助确保快速实施应用。 电机控制单元几乎用于所有的应用中,并且必须根据不同的应用满足不同的要求。汽车行业对于电机控制单元的需求高涨,但其硬件设计非常
[工业控制]
基于LIN总线的车用无刷直流电机控制器设计
1 前言
随着汽车部件的电动化、自动化程度不断提高和对汽车电机的噪声、电磁兼容、效率的高要求,永磁无刷直流电机正在逐步替代有刷的永磁直流电机 。永磁无刷电机具有体积小、寿命长、效率高、结构简单、可靠性好等优点,利用它作为汽车部件的驱动执行元件可有效地提高汽车部件的性能。例如在Freightliner公司的M2系列商务车上,采用无刷电机驱动其空调系统的鼓风机,更好地调节了送风速度 。
由于汽车总线技术的日趋成熟,汽车内多个电机单元的控制方式正从传统的集中式线束控制向分布式总线控制转变。分布式总线控制可以减少线束,降低成本,便于各个电机控制单元和车内其它电控单元一起形成一个综合协调的控制系统,提高各控制单元的运行可靠性,减少
[工业控制]