智能手机等移动设备中的MEMS传感器

发布者:SereneWhisper最新更新时间:2012-03-10 来源: 21IC 关键字:智能手机  移动设备  MEMS传感器 手机看文章 扫描二维码
随时随地手机看文章

增强实境

增强实境(AR)是在一个实时显示的真实环境上叠加图形、声音和其它感知强化技术并使其具有互动性和可操纵性的功能或用户界面。在一个真实环境内融合3D虚拟信息有助于提高用户对虚拟目标周围环境的真实感。

最近,增强实境技术出现了几个成功的应用案例。例如,汽车安全设备把路况和汽车周围的信息投射到前档风玻璃上,让驾驶员对汽车所在位置有全面了解。另一个应用是把智能手机对准一个方位已知的目标,例如饭店或超市,手机就会显示所指目标的信息。此外,如果身处一个陌生的大城市,这个功能还能帮助你找到最近的地铁站,只要把手机旋转360度,即可锁定地铁路线,沿所指方向到达目的地。

社交网络在现代人的生活中扮演着重要作用。当一个人接近一个购物中心时,他可以用手机指向购物中心。然后,他的朋友将会收到经过数字处理技术强化的他所在位置和周边环境的虚拟信息。反之亦然,他也会收到他朋友的方位和周边信息。因此,增强实境是一种改变人们对真实世界的感觉的新方式。

由于智能手机市场高速增长,移动设备开始兴起增强实境应用。图1所示是在智能手机内实现移动增强实境所需的关键模块。

 
            图1 智能手机的移动增强实境系统结构

数字摄像头:用于传送实际环境的信息流,并在液晶触摸屏上显示捕获的视频。目前,新款智能手机上已配备500万像素或更高分辨率的成像传感器。

CPU、手机操作系统、用户界面和软件开发工具:这些是智能手机的核心模块。现在新的智能手机配备1GHz以上的双核CPU、512MB RAM内存和32GB存储器。在应用开发过程中,可通过用户界面和软件开发工具(SDK)调用应用程序接口,访问图形、无线通信功能、数据库和MEMS传感器原始数据,无需知道这些代码背后的详细原理。

高灵敏度GPS接收器、AGPS(辅助GPS)或DGPS(差分GPS) :当捕获到有效的卫星信号时,这些模块用于确定用户当前的经纬度位置。多年来人们一直在研究提高GPS接收器在室内和高楼林立的地区的接收灵敏度和定位精度,因为在这类地区卫星信号变弱,并发生多信道干扰错误。

无线数据传输接口,包括GSM/GPRS、WiFi、蓝牙和RFID:无线数据接口的主要目的是接入互联网,检索当前位置目标的在线数据库,在等待GPS定位或没有GPS信号时提供简要的定位信息。如果建筑物内预装了发射器,其它的近距离无线连接如WLAN、蓝牙和RFID也可以提供精度适当的室内定位信息。

本机或在线数据库:用于把增强的虚拟目标信息叠加到真实世界视频上。当目标与当前方位吻合时,系统将能从本机数据库或在线数据库检索目标的信息。然后用户可以点击触摸屏上的超级链接或图标,接收更加详细的方位信息。

内置数字地图的液晶触摸屏:提供高分辨率的用户界面,显示含有虚拟目标信息的真实世界的视频。有了数字地图,用户可以知道当前位置所在街道名称,无需配戴任何特殊的3D眼镜。

MEMS传感器(加速度计、磁力计、陀螺仪和压力传感器):这些传感器是自导式器件,随时随地工作。因为低成本、小尺寸、轻量、低功耗、高性能,它们成为行人航位推算应用的首选半导体产品。这些传感器与GPS接收器集成在一起可以在室内外获得方位信息。

随时随地获取精确、可靠的方位信息,使虚拟目标与实际环境保持一致,是移动增强实境应用面临的主要挑战。[page]

室内方位检测

尽管智能手机内置GPS接收器,在户外的定位功能非常不错,可在数字地图上显示航向,但是,某些GPS接收器在室内或高楼林立的城区无法接收卫星定位信号。即便在户外,当汽车或行人静止时,GPS也无法提供精确的方位或航向信息。GPS无法区分微小的高度变化。此外,GPS仅凭一个天线无法为手机或汽车用户提供俯仰/滚转/航向等姿态信息。

DGPS的定位精度为几cm,但是需要另一个GPS接收器做基站,使用某一种距离粗捕获码向移动GPS接收器发射参考位置信息。辅助全球定位系统(A-GPS)在某种程度上有助于GPS获得室内定位信息,但无法在可以接受的间隔内提供精确的定位信息。当手机用户静止时,至少需要三个GPS天线才能检测到用户的姿态信息。不过,目前还无法在一部智能手机上安装多个GPS天线。

因此,仅有GPS的智能手机无法为用户提供精确的方位和姿态信息。自导式MEMS传感器是协助GPS实现一体化导航系统、提供室内外LBS定位服务的选择。

当天线没有被遮挡时,GPS接收器的绝对定位精度是3m到20m,这个参数在一段时期后不会发生漂移。基于MEMS传感器的捷联式惯性导航系统(Strap-down Inertial Navigation System,SINS) 可在很短时间内提供精确的定位信息。但是,根据运动传感器的性能,这种导航系统在使用一段时间后很快就会发生精度漂移现象。行人航位推算系统(Pedestrian Dead Reckoning,PDR)是一个根据步长和方位计算从室内已知初始位置开始的行走距离的相对导航系统,虽然定位精度不会随时间推移而发生漂移,但是需要在受磁力干扰的环境内保持航向精度。此外,GPS需要对步长进行校准,才能达到可以接受的定位精度。

按照捷联式惯性导航系统理论,根据内在的偏差漂移和比例因数,惯性传感器(3轴加速度计和3轴陀螺仪)可分为三大类:导航级、战术级和商用级。通过下面两个方程式 ⑴ ,可以计算出独立的加速度计和陀螺仪的水平位置误差。

加速度计的位置误差: PE_ACC=1/2 ACC_biasT2 (1)

其中ACC_bias是加速度计长期偏差稳定性,单位是mg;g=9.81m/s2;T是双重积分周期,单位是s;PE_ACC是ACC_bias造成的位置误差,单位是m。

陀螺仪的位置误差:PE_GYRO=1/6 gGYRO_biasT3 (2)

其中g是地球重力,9.81m/s2;GYRO_bias栍

陀螺仪长期偏差稳定性,单位是rad/s;T是双重积分周期,单位是s,PE_ACC是GYRO_bias造成的位置误差,单位是m。

以上两个方程式可用于计算典型惯性传感器的性能和长期偏差稳定性引起的水平位置误差。当惯性传感器与GPS集成在一起时,这些误差不会随时间推移而扩大,其它引起位置误差的因素,如失匹、非线性和温度影响,也应在计算中给予考虑。

最近在MEMS工艺上取得的进步使MEMS加速度计和陀螺仪能够连续地提供更高的定位性能,使商用级产品更接近战术级产品的性能。在较短的时间,如1分钟内,独立的加速度计和陀螺仪可取得相对较高的测量精度。当GPS信号受阻时,这对于GPS/SINS一体化导航系统很有用。

对于消费电子产品,室内行人航位推算系统5%的行进距离误差通常是可以接受的。例如,当一个人走过100m的距离时,定位误差应该在5m范围内。这要求航向误差在±2°到±5°之间[2]。例如,如果航位误差是2°,当一个人走过100m的距离时,定位误差应该在3.5m范围内[即2×100m×sin(2°/2)]。

此外,由于MEMS压力传感器能够测量相对于海平面的绝对气压。因此,它可以确定手机用户在海平面以下600m到海平面以上 9000m之间的高度,辅助GPS的高度测量[2]。利用MEMS传感器与GPS接收器的行人航位推算系统结构图如图2所示。

 
       图2 移动设备行人航位推算系统结构图

[page]

MEMS传感器整合

传感器整合是一套数字滤波算法,用于修正每个独立传感器的缺陷,然后输出精确、响应快速、动态的(俯仰/滚转/偏航)姿态测量结果。其目的是把每个传感器的测量数据作为输入数据,然后应用数字过滤算法对输入数据进行相互修正,最后输出精确、响应快速、动态的姿态测量结果。因此,航向或方位不受环境磁干扰的影响,没有陀螺仪的零点漂移问题。

能够修正倾斜度的数字罗盘由一个3轴加速度计和一个3轴磁力计组成,可提供以地球北极为参考的航向信息,但是这个航向信息容易受到环境磁力的干扰。如果安装一个3轴陀螺仪,开发一个9轴传感器整合解决方案,则可以随时随地保持精确的航向信息。

在设计多个MEMS传感器的系统时,了解下面每种MEMS传感器的优缺点很重要。

加速度计:在静态或慢速运动状态下,可用于倾斜度修正型数字罗盘;或用于计步器的检测功能,检测行人当前是静止还是运动状态。不过,当系统在3D空间静止时,加速度计无法区分真正的线性加速度与地球重力,而且容易受到震动和振荡的影响。

陀螺仪:可以连续提供从系统载体坐标到局部地球水平坐标的旋转矩阵,当磁力计受到干扰时,陀螺仪可辅助数字罗盘计算航向数据。长时间的零点漂移会导致无限制的姿态和定位错误。

磁力计:可计算以地球北极为参考方向的绝对航向,并且可用于校准陀螺仪的灵敏度,但容易受到环境磁场的干扰。

压力传感器:在室内导航时,压力传感器可告诉你身处哪一楼层,辅助GPS可计算高度;当GPS信号变弱时,辅助GPS提高定位精度,但是容易受到气流和天气状况的影响。

基于以上各方面考虑,卡尔曼滤波器是最常用的整合不同传感器输入信息的数学方法。这种方法权衡不同传感器的作用,给性能最高的方面最高权数,因此,与基于单一媒介的导航系统相比,卡尔曼滤波器算法的估算结果更精确可靠[3]。目前的传感器整合方案中,基于四元数的扩展型卡尔曼滤波器(EKF)很受欢迎,因为四元数只有4个元素,而旋转矩阵有9个元素,此外,四元数法还避免了旋转矩阵的特殊问题[3]。

结论

随时随地精确定位是增强实境等先进移动应用面临的主要挑战,因为增强实境与行人航位推算(PDR)或定位服务(LBS)的关系密切。鉴于GPS接收器的接收限制,MEMS传感器对室内行人航位推算应用很有吸引力,因为这些传感器大多数已经出现在智能手机内。

要想取得5%的室内行人航位推算定位误差,需要开发MEMS传感器整合算法,以修正每个传感器的缺陷,使这些传感器实现优势互补。随着MEMS传感器的性能不断提高,在不远的将来,与用户无关的SINS/GPS一体化导航系统将会成为智能手机的标准配置。(作者:Jay Esfandyari,Paolo Bendiscioli,Gang Xu)

参考文献
1. A. Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control, ISBN: 978-0387985077 (hardback), 0387985077 (electronic), 1998
2. STMicroelectronics, Inc. J. Esfandyari et al, MEMS Pressure Sensors in Pedestrian Navigation, Sensors Magazine,Dec. 2010
http://www.sensorsmag.com/electronics-computers/consumer/mems-pressure-sensors-pedestrian-navigation-7896
3. Greg Welch, Gary Bishop, An Introduction to the Kalman Filter, University of North Carolina at Chapel Hill
4. A. Sabatini, Quaternion-Based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic Sensing, IEEE transaction on biomedical engineering, Vol. 53, No. 7, July 2006
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1643403

关键字:智能手机  移动设备  MEMS传感器 引用地址:智能手机等移动设备中的MEMS传感器

上一篇:电子灭鼠器、电子驱鼠器和电子驱蚊器电路介绍
下一篇:利用手机改制的远程家电遥控器及防盗报警器

推荐阅读最新更新时间:2024-05-02 21:57

荣耀品牌或在今年 7 月推出旗舰智能手机
荣耀从母公司华为分离出来已经几个月了,自那以来,该公司尚未推出旗舰智能手机,但这种情况可能很快就会改变。 据悉,荣耀品牌预计将在今年 7 月推出旗舰智能手机。这款设备很可能会成为荣耀 Magic 系列的一部分。 这款智能手机将搭载高通骁龙 888 芯片,但除此之外,我们对这款设备一无所知。由于距离发布只有几个月的时间,预计在接下来的几周或几个月内会有更多关于它的信息。 去年 12 月,荣耀首席执行官赵明曾透露,该公司计划在未来推出旗舰智能手机,该品牌将拥有自己的 Mate 系列和 P 系列设备。 事实上,荣耀已经在与高通(Qualcomm)和联发科(MediaTek)等公司就芯片供应达成协议,为该品牌即将推出的设备
[手机便携]
2018年三季度全球智能手机面板或结构性价格上涨
2018年上半年市场需求冷淡,面板需求低迷,智能手机面板供给整体处于供过于求的状态,进入下半年,随着市场旺季到来,预计面板供需比进一步收窄,同时受到DDIC(驱动芯片)缺货影响,面板价格开始走向平稳或部分规格存在价格上涨的压力。 需求面:预计三季度全球智能手机的面板总需求约5.3亿部,环比增长约31.4%。 从需求面看,2018年上半年,全球智能手机成长仍显疲态,根据群智咨询(Sigmaintell)数据统计,一季度全球智能手机出货量3.2亿余部,同比下滑2.6%;二季度预计仍然难以摆脱同比下滑趋势,二季度全球智能手机出货预估3.3亿余部,同比下滑0.4%。市场需求没有明显好转,同时由于全面屏和异形屏的发展,面板的多样化定制化程度
[手机便携]
CEVA为翱捷科技公司提供智能手机和IoT设备的 DSP和连接技术
CEVA,智能和互联设备的信号处理IP授权许可厂商 (纳斯达克股票交易所代码:CEVA) 宣布,翱捷科技(上海)有限公司已经获得多种CEVA技术授权许可,用于即将推出的面向智能手机和窄带物联网(NB-IoT)边缘设备的片上系统芯片(SoC)产品。翱捷科技将在其无线产品中融入一系列CEVA IP以提供蜂窝、蓝牙和Wi-Fi连接支持,并实现计算机视觉、语音和音频领域的新兴应用。 翱捷科技首席执行官戴保家评论道:“CEVA为智能和连接设备提供了全面的技术组合,完全满足了我们对高成本效益的低功耗技术的严格要求。作为翱捷科技的重要知识产权合作伙伴,CEVA为我们的产品贡献了巨大的价值,使我们能够为智能手机和IoT市场提供一流的调制解调器
[手机便携]
飞思卡尔新的 Xtrinsic六轴传感器丰富了移动设备的功能
2012年6月18日,圣安东尼奥(飞思卡尔技术论坛)讯 - 目前先进的移动操作系统要求使用先进的传感器技术来提供更准确的数据,也要求比以往更快的响应速度。针对这一需求,飞思卡尔半导体公司(NYSE:FSL)日前推出一款Xtrinsic 6轴传感器,该产品在一个封装内融合了加速计、磁力计、具有高分辨率的运动传感和航向技术。 新的 Xtrinsic FXOS8700CQ传感器面向增强实境、游戏、导航和需要高度精确的定位数据的位置服务等移动应用,它的推出使业界一流的MMA845x加速计和MAG3110磁力计的产品系列向组合式传感器扩展,以 3x3x1.2mm的小型封装,实现更低功耗和更丰富的嵌入式功能。
[手机便携]
用户与智能手机之间20%的互动将通过虚拟个人助手实现
中国日益盛行的即时通讯平台正让传统应用市场陷入困境 【2017年1月4日】全球领先的信息技术研究和顾问公司Gartner指出,技术的进步将推动用户以更直观的方式与智能手机进行互动。同时Gartner还预测到2019年,用户与智能手机之间20%的互动将通过虚拟个人助手(virtual personal assistants,VPAs)实现。 Gartner研究副总裁Annette Zimmermann表示:“虚拟个人助手在智能手机用户中的不断普及以及智能机器的对话功能将进一步增强互动性。” 在2016年第四季度,Gartner对三个国家(美国、英国和中国)的3021名消费者开展了一项年度手机应用调查,结果发现42%的美国受访
[手机便携]
用户与<font color='red'>智能手机</font>之间20%的互动将通过虚拟个人助手实现
智能手机 移动互联网 手机操作系统
安卓和苹果iOS垄断市场 在中国,智能手机已经超越电脑成为第一大上网终端。但是,作为移动互联网时代核心竞争力载体的手机操作系统,长期以来却被以安卓和苹果iOS为代表的国外操作系统牢牢把控,垄断不仅制约了中国移动互联网产业的发展,也关乎国家的信息安全。研发具有中国自主知识产权的手机操作系统正当其时,这也是做强移动互联网产业的必经之路。 2009年—2012年中国移动操作系统增加量市场占比 产业格局牵动游戏规则 安卓初步占据主导地位 从市场层面上看,智能手机操作系统格局以前所未见的速度演化,目前安卓初步占据主导地位。 2008年诺基亚主导的塞班系统占全球市场移动操作系统年销量的52%,之后受到iOS与安卓系
[嵌入式]
全球已激活安卓智能手机达23亿 中国和印度占半壁江山
安卓和iOS在智能手机市场创造了双寡头,占全球31亿活跃智能手机设备的95%以上。就所使用的设备数量而言,安卓超过iOS在市场占据了主导地位,2017年11月份的市场份额为75.9%,23亿安卓智能手机在使用中。中国和印度几乎占这一数额的一半。根据Newzoo的全球移动市场报告,随着全球迎来3亿新智能手机,安卓的份额将在2018年进一步增加。 这些新设备中的大多数将是在发展中国家激活的廉价安卓设备。然而,随着旗舰安卓设备变得越来越强大,它们也越来越挑战苹果在西方的市场份额。不仅像三星,小米和华为这样的品牌加强了他们的创新,设计和营销实力,谷歌还将在与HTC达成协议之后,直接与其自己的高品质Pixel系列设备展开竞争。 通过
[手机便携]
石墨烯存储器问世 让可弯曲智能手机美梦成真
 据报道,三星Galaxy X将折叠一半,并具有灵活的OLED显示屏,但埃克塞特大学的科学家们已经创造出了一种新的材料,为智能手机制造商提供了更多的灵活性,包括在设计方面。为了实现真正灵活的智能手机,内部组件也将具有灵活性,而不仅仅是显示屏。由石墨烯制成新型存储系统将取代智能手机和其他类型设备中当前使用的闪存芯片。下面就随手机便携小编一起来了解一下相关内容吧。 这种新型的混合石墨烯氧化钛内存,只需要5ns来写入和读取数据。它也只有50nm长,8nm厚,为智能手机制造商在新设备的设计和功能方面提供了足够的余地。除了作为世界上最轻和最强的化合物之外,石墨烯也是最薄的,厚度仅为一个原子。碳基材料也是最好的电导体,这将使其适合放置在诸如
[手机便携]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved