基于单轮车辆悬架的Fuzzy-PID控制器设计和仿真

发布者:数字之舞最新更新时间:2012-05-10 来源: 中国计量测控网 关键字:车辆工程  模糊控制  主动悬架 手机看文章 扫描二维码
随时随地手机看文章

  随着高速公路的日益发展,人们对汽车高速行驶时平顺性和安全性的要求越来越高。良好的车辆悬架系统可以有效地降低由于路面不规则激励造成过大车体加速度,使车辆具有良好的行驶平顺性和安全性。自主动悬架的概念提出以来,人们已经探求用各种控制理论算法设计主动悬架控制器。研究其在提高设计主动悬架中的应用效果。

  模糊逻辑基于人类模糊思维这一抽象机理,它强调的重点是应用的简单和方便。自20世纪60年代,模糊数学的建立为模糊推理系统尤其是模糊控制系统的应用奠定了理论基础。目前,模糊推理系统已成功应用于自动控制、数据分类、决策分析、专家系统以及计算机视觉系统之中。

  本文研究车辆主动空气悬架的控制问题,在车辆主动空气悬的常规PID控制器的基础上,运用模糊推理对常规PID控制器进行参数在线修订,控制策略融合了PID控制和模糊控制的优点,设计了基于单轮车辆主动空气悬架的Fuzzy—PID控制器,并对Fuzzy—PID控制的单轮车辆主动空气悬架进行Matlab建模和仿真试验。仿真结果表明,与车辆被动空气悬架、常规PID控制的车辆主动空气悬架相比,Fuzzy—PID控制的车辆主动空气悬架可大大降低车身加速度和悬架动行程,提高车辆乘坐舒适性和操纵稳定性,具有良好的鲁棒性,从而验证了Fuzzy—PID控制器的有效性和实用性。

  1 单轮车辆主动悬架和路面激励

  设计车辆悬架系统时,可把单轮车辆主动悬架模型(即单轮车辆模型)简化成一个弹簧-阻尼系统,该系统的力学模型如图1所示。

  单轮车辆主动悬架的数学模型为:

  式中,m1为车身质量,m2为悬架质量,x1为车身垂直位移,X2为悬架垂直位移,U为路面激励,k1和k2为弹簧胡克系数,b1和b2为阻尼系数。

  路面不平度随机激励为:

  式(3)中:no为参考空间频率,Gq(no)为参考空间频率下的路面功率谱密度,w(t)为白噪声。

  2 Fuzzy-PID控制器设计

  2.1 设计思想

  以车身垂直速度与其期望值的差值e及差值变化率ec作为控制器的输入量,根据实际需要的PID控制参数Kp、Ki、Kd相对于e和ec的模糊关系来确定模糊规则,通过在原来的单纯的PID控制器上加入模糊推理器,组成Fuzzy-PID控制器可以对参数进行在线修正,使系统的动态特性明显提高,并且显著的提高了系统的抗干扰能力和鲁棒性,同时可以减少调节的时间。Fuzzy-PID控制器的原理框图如图2所示。

  该系统实现PID参数在线自调整的计算公式为:

  式中:KP、KI、KD为控制器的最终控制参数,Kp、Ki、Kd为常规PID控制器参数,kp、ki、kd为模糊推理器的修正参数。

  2.2 模糊推理器及模糊规则的建立

  模糊推理需要3个步骤:模糊化、模糊推理判断和解模糊化。模糊化过程将实际的输入量转化为模糊量,经过基于模糊规则的模糊推理和判断,最终将模糊量转化为真实量,完成解模糊化的过程,这也是模糊控制器的工作原理及核心。

  本文模糊推理器采用双输入、三输出形式,控制器类型选为Mamdani型,解模糊规则选择为Centmid法,输入输出隶属函数均选择为trimf形式。选取输入变量e和ec及输出变量kp的论域均为(-6,6),模糊子集定义为{NB NM NS O PS PM PB},选取输出变量ki和kd,ki和kd只取正值,论域为(-3,3),模糊子集为{O PS PM PB}。通过闭环运行及模拟,观察系统响应曲线,分析得到控制器参数kp、ki、kd对系统的实际影响,结合PID控制器参数整定理论,来确定最终的模糊规则,具体如表1所示。

[page]

  1)|e|较大时,为尽快消除偏差,提高相应速度,kp应取较大值,ki取0;|e|较小时,为继续消除偏差,并防止超调过大,kp取值应减小,同时ki取小值。

  2)e·ec<0时,被控量朝着接近给定值的方向变化,若|e|较大,此时kp取中等或小值,ki取中等值,kd取0,以加快控制的动态过程。

  3)|e|的大小表示的变化速率,|e|随的增大,kp应减小。

  2.3 Fuzzy-PID控制器

  模糊推理器结合常规PID控制器组成Fuzzy—PID控制器,将单轮悬架子系统、路面随机激励子系统和Fuzzy-PID控制器进行组合,得到整个仿真系统的Simulink模型如图3所示。

  3 仿真试验

  Simulink搭建的模型中,车身质量m1=2 500 kg,悬架质量m2=320 kg,悬架弹簧的弹性系数k1=80 000 N/m,阻尼系数b1=350 Ns/m,模拟轮胎的弹簧弹性系数k2=500 000 N/m,阻尼系数k2=15 020 Ns/m,假定汽车在B级路面上,以20 m/s的速度行驶。分别对采用常规PID控制的主动悬架和采用Fuzzy—PID控制的主动悬架的进行仿真,仿真结果如图4和图5所示。

  3.1 结果分析

  仿真结果表明采用PID控制器的主动悬架可以改善汽车的行驶平顺性,而当采用Fuzzy—PID控制器时,控制效果可以进一步提高。采用Fuzzy—PID控制的主动悬架,无论是车身的速度还是加速度均比被动悬架和采用常规PID控制的主动悬架有很大降低,优势十分明显。

  4 结束语

  本文研究车辆主动空气悬架的控制问题,在车辆主动空气悬的常规PID控制器的基础上,运用模糊推理对常规PID控制器进行参数在线修订,设计了基于单轮车辆主动空气悬架的Fuzzy-PID控制器,并对Fuzzy-PID控制的单轮车辆主动空气悬架进行Matlab建模和仿真试验。仿真结果表明,与车辆被动空气悬架、常规PID控制的车辆主动空气悬架相比,Fuzzy—PID控制的车辆主动空气悬架可大大降低车身加速度和悬架动行程,提高车辆乘坐舒适性和操纵稳定性,具有良好的鲁棒性,从而验证了Fuzzy—PID控制器的有效性和实用性。

关键字:车辆工程  模糊控制  主动悬架 引用地址:基于单轮车辆悬架的Fuzzy-PID控制器设计和仿真

上一篇:基于XC164的六通道ABS开发板设计
下一篇:汽车电子OSEK配置器的设计与实现

推荐阅读最新更新时间:2024-05-02 22:03

模糊控制比例因子与空调系统稳定性关系的研究
    摘 要 介绍了两输入、单输出的模糊控制系统的仿真,讨论了比例因子(ke、kec、ku)对系统响应的影响,着重研究了比例因子与系统稳定性之间的关系,并在此基础上提出了空调系统比例因子的设计原则。     关键词 空气调节器 模糊控制 比例因子 稳定性       模糊逻辑控制(FLC)是近年来控制学术界一个引人注目的研究领域,并且已经成功地应用在空调系统中 。实践证明,与传统控制方法相比,FLC对环境干扰、过程参数变化等具有较强的鲁棒性,并能抑制非线性因素对控制器的影响 。但是FLC也有自身的缺陷,如FLC的稳定性问题等,而且FLC对严重影响控制器动、静态品质和控制的鲁棒性的比例因子Scaling
[应用]
加热炉温度控制系统模糊智能实现
1.简介 目前莱钢1500中宽带加热炉存在的主要问题是加热温度不均,加热能力不足。现在两座加热炉实际加热能力300~450t/h,低于设计能力480~520t/h(冷坯~热坯)。板坯炉间温差25-35℃,同板温差20-45℃。而国内同类生产线加热质量指标是,板坯炉间温差≤15℃,同板温差≤15℃。通过深入调研发现引进的斯坦因加热炉控制系统设计思想与莱钢现有的工况条件不能完全吻合,加之现场轧钢节奏的频繁改变,不能满足现有工况条件的变化,并且在实际生产过程中缺少必要的统计分析数据和现场检测手段。产量计划、加热钢种、尺寸、坯料入炉温度、待(停)轧时间、开轧温度变化时,均需一段时间使得加热炉温度缓慢提升,以避免对整个煤气系统的强烈
[工业控制]
模糊控制在烧结炉温控系统中的应用
摘要:为提高烧结质量,满足现代工业生产工艺需求,以先进的自动化控制设备为核心,以基于友好的人机界面为交流窗口,采用智能控制技术来控制烧结炉运行的烧结工艺正逐步显示出其优良的特性与强大便捷的操作功能。阐述了几种烧结炉温控方式,并在此基础上提出和设计了一种基于模糊PID控制的新方法来控制烧结炉炉温。 关键词:PLC;烧结炉;模糊控制;烧结温度 0 引言 真空脱蜡烧结一体炉可一次性完成脱胶、烧结、冷却和收取成型剂的全套工艺流程。其在传统烧结炉结构的基础上增加了一个石墨内胆,并采用低压载气脱蜡工艺,经收蜡装置分离出粘结(成型)剂后,余气以多种方式排出。由于采用了上述工艺方式,成型剂在炉内不会接触冷的表面及在炉内积存,也不会污染保温层
[工业控制]
<font color='red'>模糊控制</font>在烧结炉温控系统中的应用
模糊控制比例因子与空调系统稳定性关系的研究
    摘 要 介绍了两输入、单输出的模糊控制系统的仿真,讨论了比例因子(ke、kec、ku)对系统响应的影响,着重研究了比例因子与系统稳定性之间的关系,并在此基础上提出了空调系统比例因子的设计原则。     关键词 空气调节器 模糊控制 比例因子 稳定性       模糊逻辑控制(FLC)是近年来控制学术界一个引人注目的研究领域,并且已经成功地应用在空调系统中 。实践证明,与传统控制方法相比,FLC对环境干扰、过程参数变化等具有较强的鲁棒性,并能抑制非线性因素对控制器的影响 。但是FLC也有自身的缺陷,如FLC的稳定性问题等,而且FLC对严重影响控制器动、静态品质和控制的鲁棒性的比例因子Scaling
[传感技术]
汽车主动悬架的单神经元自适应控制
  一、前言   汽车悬架系统对车辆行驶平顺性、乘坐舒适性和操纵稳定性有很大影响。传统的被动悬架只能被动地存储和吸收外界能量,不能主动适应车载质量、轮胎刚度等车辆参数和路面激励的变化,大大制约了车辆性能的提高。主动悬架克服了传统被动悬架的诸多局限,使悬架系统对不同运行工况具有最大程度的适应能力。   由于悬架系统的模型参数往往不确定,路面激励未知且可变,研究开发出各种自适应控制策略应用于主动悬架控制[1 ,主要有模型参考自适应控制、自校正控制和神经网络自适应控制。文献[2 提出了以理想天棚阻尼控制为参考模型的自适应控制策略,但在设计中需要选择一个合适的Lyapunov函数,这要求有一定的理论知识和实践经验,否则不易获得较好
[嵌入式]
单路口交通多相位模糊控制器的设计与仿真
    摘要: 用模糊控制方法对单路口多相位的交通信号进行控制,提出以当前相的主队列和后继相的主队列决定信号配时的方法,并用Matlab及其模糊逻辑工具箱实现二维模糊控制器。以通过交叉口的平均车辆延误作为评价指标,衡量该控制器的控制性能,采用Matlab编程设计实现了交叉口六相位的仿真系统,仿真结果表明控制效果比较好。     关键词: 单路口交通 多相位 模糊控制 仿真 MATLAB 单路口交通控制就是确定交叉路口红绿灯的信号配时,使通过交叉口的车辆延误尽可能小。传统的控制一般是采用模型控制或预先人为地设定多套方案,实践表明这种方法的控制效果并不理想。由于道路上的交通流具有较大的随机性和相当的复杂性,所实施
[传感技术]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved