基于MC9S12DGl28的自主寻迹智能车控制系统

发布者:创意旋律最新更新时间:2012-07-06 来源: eefocus关键字:自主寻迹  模糊控制算法  自动控制 手机看文章 扫描二维码
随时随地手机看文章

1 引言

智能汽车是汽车电子、人工智能、模式识别、自动控制、计算机、机械多个学科领域的交叉综合的体现,具有重要的应用价值。智能寻迹车是基于飞思卡尔MC9S12DGl28单片机开发实现的,该系统采用CCD传感器识别道路中央黑色的引导线,利用传感器检测智能车的加速度和速度,在此基础上利用合理的算法控制智能车运动,从而实现快速稳定的寻迹行驶。

2 硬件系统设计

该系统硬件设计主要由MC9S12DGl28控制核心、电源管理模块、直流电机驱动模块、转向舵机控制模块、道路信息检测模块、速度检测模块和加速度检测模块等组成,其结构框图如图1所示。


2.1 主控制器模块

智能车的控制核心为MC9S12DGl28。MC9S12DGl28是飞思卡尔公司生产的一款16位单片机,片内总线时钟可达到25 MHz;片内资源包括8 K RAM、128 K Flash、2 K EEP-ROM;SCI,SPI,PWM和串行接口模块;脉宽调制模块(PWM)可设置成4路8位或2路16位,逻辑时钟选择频率脉宽:2个8路10位A/D转换器,增强型捕捉定时器并支持背景调试模式等。

2.2 电源管理模块

该系统设计采用7.2 V/1 800 mA镍镉电池供电,7.2 V电压经过BMlll7—5稳压后得到5 V电压,向单片机、红外传感器和加速度传感器供电。5 V电压经MAX8715升压后得到12 V电压,向CCD图像传感器供电:7.2 V电压经二极管降压得到约6 V的电压来驱动舵机;电机驱动器MC33886则直接由电源供电。

2.3 道路信息检测模块

该系统设计使用NEC公司的线阵CCDμPD3575D检测赛道信息。该器件可工作在5 V驱动(脉冲)和12 V电源条件下。μPD3575D的驱动需要4路脉冲,分别为转移栅时钟φIO、复位时钟φRD、采样保持时钟φSHO和传输门时钟φTG。系统设计由外围电路直接产生CCD驱动时钟,采用计数器和触发器专门设计时序电路,产生转移栅时钟φIO、复位时钟φRO、采样保持时钟φSHO,单片机只需产生一个帧同步信号(传输门信号φTG)与外围时序电路保持同步即可。μPD3575D输出的是模拟信号,将采集图像传输至单片机,一般需对μPD3575D输出信号进行A/D转换,考虑到设计实际上只需要区分黑色和白色,μPD3575D对这两种输出信号差异较大,因此,将μPD3575D输出信号放大后直接使用一个比较器对信号二值化处理,如图2所示。由单片机检测二值信号的跳变时间,便可计算出黑线位置,从而进一步缩短单片机在CCD上所消耗的时间。



2.4 车速检测模块

系统使用红外传感器检测直流电机的转速。在后轮减速齿轮上粘贴一个均匀分布有黑白条纹的编码盘。红外接收管接收与未接收红外光所表现的特性是阻抗变化,所以只需用一个电阻电压变换电路和比较电路便可将其模拟信号转换为数字信号,供单片机采集。

2.5 直流电机驱动模块

系统采用RS380-ST型直流电机,其驱动电路采用集成电机驱动器MC333886。此器件是单片集成的H桥元件,有单桥和双桥两种控制方式,其可控电压为5~40 V,最大PWM频率达10 kHz,内置短路保护电路和过热保护电路,最大能承受的5 A的工作电流。其中D1、D2是MC33886的使能端,INl、IN2为输入端,0UTl、0UT2为其输出端。图3是将MC33886的D2端接到单片机的PWM输出端口,通过MC33886的两个输出端口实现电机的转速控制、方向控制及制动等。采用输出端并联并连接到电机一端,以及增加散热片的方法使智能车在相同电压和占空比时,其速度更快,同时还降低H桥上的压降,减少MC33886发热,防止器件由于温度过高被烧毁。


2.6 加速度检测模块

智能车在高速行驶中如果突然转向,会出现侧滑现象。该系统设计采用ADXL202加速度传感器判断移动智能小车在行驶中是否出现侧滑现象。ADXL202是美国ADI公司推出的低成本双轴加速度传感器,其外围电路简单.采用5 V供电,将加速度传感器的输出端9引脚和10引脚直接接到单片机的AN00,AN01引脚,通过计算输出信号的占空比可
精确检测轴向和横向加速度。

2.7 转向控制模块

智能车使用韩国futaba公司的S3010舵机完成转向控制。舵机控制信号由单片机的PWM模块PWM0和PWMl联合产生一个16位的PWM信号。由于舵机的转角与脉冲宽度存在线性关系,改变PWM占空比可改变输出脉冲的宽度。从而控制舵机转向。将驱动舵机脉冲波型的周期从原来的20ms减小到10 ms,增加舵机控制信号的更新频率,减少舵机控制环节中的延时,提高整个车模转向控制速度。

3 系统软件设计

系统的基本控制策略是根据CCD传感器检测到的路径信息,车速检测模块检测到的当前车速信息和加速度传感器检测到的加速度信息,来控制舵机和直流驱动电机运动。

3.1 车速控制

为了提高机器人运行的稳定性,采用PID算法实现直流电机的转速闭环调节,PID控制器的输入量为给定转速与输出转速的差值,采用增量式PID算法。

3.2 智能车平稳性控制

为了避免智能车发生侧滑现象,应在智能车上安装加速度传感器,以检测是否发生侧滑。车速为v,转向角为δ,车体质量为m,轴距为l,当理想转向时,向心加速度为a,则a=mv2tanδ/l。当加速度传感器反馈回的实际加速度a*小于理论加速度a时(实际中应当保持一定的死区),表明智能车系统存在侧滑现象。这时便命令智能移动小车减速,速度参考量为
[page]

3.3 舵机转向控制

系统使用模糊控制算法控制智能车转向。传感器检测的重点是转向角误差,当转向角误差相同时,不同的误差变化率反映不同的轨道半径,因此,该设计还检测转向角误差变化率。当误差量很小,且误差变化率不变时,则判定为智能小车正沿着引导线行驶,则机器人小车沿直线行进;若误差变化率较大时,表明智能小车正在偏离引导线,此时,需对航向角做相应调整。通过CCD图像传感器检测白色地面上的黑线,根据返回的信号得出驾驶角误差和误差变化率,将CCD图像传感器视觉中心的误差和误差变化率作为控制器的输入,分别用e和ec表示;输出为驾驶角,用δ表示。模糊语言值分别选为:e:{LB,LM,LS,CE,RS,RM,RB};ec:{PB,PM,PS,Z0,NS,NM,NB};δ:{LB,LM,LS,CE,RS,RM,RB}。隶属度函数采用三角形,如图4所示。交叠系数β=(c1一a2)/(c2-b1),取0.75。根据驾驶经验建立规则库进行模糊推理后.利用重心法进行反模糊化得出舵机所要转的角度。

3.4 智能车控制流程

设计中,程序初始化完成后便进入空闲模式,等待中断发生。中断包括车轮转速计数器中断、CCD图像捕捉中断和以10 ms为周期的定时器0中断。驱动电机和舵机的PWM控制信号由单片机的PWM模块自动产生,其定时器0的中断服务程序如图5所示。


4 结语

以MC9S12DGl28作为控制核心,设计自主寻迹的智能车控制系统,在检测到智能车运动信息和道路信息的基础上,采用模糊控制算法控制舵机转向,通过转速PID调节的方式控制直流电机。实验证明:该智能车在白色的跑道上能沿着一定宽度任意弧度的黑色引导线以较快的速度平稳地行驶,寻迹效果良好,速度和转向控制响应快,系统的稳定性和抗干扰能力强,速度可以达到1.5 m/s,此方案已应用于全国智能车大赛。

关键字:自主寻迹  模糊控制算法  自动控制 引用地址:基于MC9S12DGl28的自主寻迹智能车控制系统

上一篇:混合动力不是过渡技术 终极目标为电动车
下一篇:汽车系统中的功率电子技术

推荐阅读最新更新时间:2024-05-02 22:10

AT89C51对直流电动机的自动控制设计
功能:通过一个可调电阻器,调节通过AD转换模块0808的输入电压,ADC模块将输入的模拟电压转换成数字电压并送到单片机P1口,单片机根据接收到的数据来输出控制电动机的转速。 总体仿真部分 单片机和ADC控制部分 电动机控制部分 仿真开启,单片机自动控制电动机转速 直流电动机自动控制 参考代码 : (如果你有兴趣也可以改成C代码) ADC EQU 35H CLOCK BIT P2.4 ;定义ADC0808时钟位 ST BIT P2.5 EOC BIT P2.6 OE BIT P2.7 PWM BIT P3.7 ORG 00H SJMP START ORG 0BH LJMP INT_T0 START: MOV TMOD
[单片机]
AT89C51对直流电动机的<font color='red'>自动控制</font>设计
阿尔泰数采模块与GPRS模块在换热系统自动控制中的应用
一、应用环境概述 某热电公司主要负责该地区企业及生活的居民提供能源服务,系统全部投运后可满足 1.8Km2 范围内近200 万m2 各类建筑的生产﹑生活﹑供热﹑制冷用蒸气。采用0.6MPa 的饱 和蒸气为基本热力工作介质:冬季做为各用户暖气系统的热源,通过换热器(多数为板式换热 器)的工作使暖气系统的循环水达到控制的温度;夏季以0.6MPa 的饱和蒸气通过溴化锂制冷 机(多数为蒸气型双效式)的工作循环满足用户的舒适性及冷气空调的要求。 1、热源 该公司供热场锅炉房包括4台35 吨/时﹑1.57MPa 饱和蒸气锅炉和3台10 吨/时﹑ 1.25MPa 饱和蒸气单层布置组装式饱和蒸气锅炉,总安装容量
[嵌入式]
基于单片机的水温液位自动控制系统设计
设计一个测温及液位自动控制系统,水位和水温都可以在一定范围内由人工设定,当液位低于设定下限值时,系统能自动加水,以保持设定液位高度不变。当温度低于设定值时,系统能实现自动加热,以保持设定的温度基本不变。 系统设计具体要求如下: (1)液位可在正常工作范围内任意设定,上、下限之间最大高度差为100mm; (2)自动完成注水(液位偏差小于5mm),达到设定液位时要有明显的声音提示; (3)具有液位超下限(可设)自动注水功能,自动保持设定液位高度,偏差小于2mm; (4)加热温度可在室温至100℃之间任意设定; (5)自动完成加热(温度偏差小于5℃),达到设定温度时要有明显的、有别于液位的声音提示; (6)
[单片机]
基于单片机的水温液位<font color='red'>自动控制</font>系统设计
基于蓝牙的电台自动控制装置设计与实现
O 引言 无线电台以其良好的通信性能被广泛应用在军事通信如巡逻执勤,民用通信如指挥调度,出租车等领域。但是无论是哪种无线电台,目前工作的方式均为单工方式,用户在使用过程中必须按下PTT开关才能进行收发的切换,这给用户造成了一定的麻烦和不便,如何能将用户的双手解放出来,利用一个有效装置自动控制无线电台的发送和接收是一个亟待解决的问题。无线蓝牙技术是一个可以在10 m范围内进行有效通信的成熟技术,将蓝牙技术应用在单工方式工作的无线电台中,利用话音激活方式,用户讲话时控制电台PTT按键自动发送,从而实现了无线电台的自动控制,本文以此为思路,通过研究无线蓝牙,设计和实现了将蓝牙和无线电台结合的电台自动控制装置,从而有效将用户的双 手解
[工业控制]
基于蓝牙的电台<font color='red'>自动控制</font>装置设计与实现
轧钢产线自动控制系统物料跟踪模型的设计与实现
1 概述   物料跟踪控制是轧机基础自动化系统的主要组成部分。物料跟踪的基本功能是跟踪钢坯从装炉开始,经过出炉、经过轧机区域,从除磷入口处辊道开始直到热矫直机出口辊道。物料跟踪主要以钢板号为主键,准确记录钢板的头尾位置和钢板在辊道上的长度位置等。   物料跟踪系统的基础数据主要来源于现场的一次检测仪表、 传感器 等,如热检(HMD),光电开关,速度变送器等。这些检测仪表将钢板的位置、辊道速度及温度等信号传送给过程控制计算机,进行下一步的钢板轧制模型的计算。物料跟踪控制模块根据设计的参考零点,计算每块钢板的头尾位置和长度信息(计数零点由辊道入口高压除鳞的初始位置确定),轧制道次的计算也在物料跟踪功能内,每块钢板都分配一个钢板号和道
[嵌入式]
基于PLC的交通灯自动控制系统
0 引言   随着自动化控制技术和微电子技术的迅猛发展,PLC作为前沿的工业控制器,具有体积小、可靠性高、易操作、灵活性强、抗干扰能力强等一系列优点,广泛用于自动化控制领域。用内部编程取代继电器逻辑控制电路中大量的中间继电器和时间继电器,简化了控制路线,提高了系统控制的可靠性,这是PLC最大的优点。借助于书序控制图和梯形图来编制用户控制程序,实现自动控制系统顺序控制,是PLC的主要功能之一。   1 控制信号系统   在车水马龙的都市,当交通干道不便于挖掘地下通道或架设天桥的时候,为了穿越马路行人的安全,需要在指定的人行横道两端设置人行道口的的红绿灯。交通灯控制工艺:南北、东西向的十字路口,均设有红、黄、绿三只信号灯。六只灯
[模拟电子]
基于PLC的交通灯<font color='red'>自动控制</font>系统
PLC自动控制系统可靠性研究
可编程控制器由于抗干扰能力强,可靠性高,编程简单,性能价格比高,在工业控制领域得到越来越广泛应用。 中央控制单元和下位机PLC之间采用串行通讯方式进行数据交换,通常距离在1000m以内选用485双绞线通讯方式,较常距离可选用光纤通讯,更长距离也可选用无线通讯方式。下位机选用PLC控制,根据控制对象的多少,控制对象的范围,可选用一台或多台PLC进行控制,PLC之间数据交换是利用内部链接寄存器,实现数据交换和共享。由于PLC对现场进实时监控具有很高的可靠性,且编程简单、灵活,因此越来越受到人们重视。 1、控制系统可靠性降低的主要原因 虽然工业控制机和可编程控制器本身都具有很高的可靠性,但如果输入给PLC的开关量信号出现错
[电源管理]
基于单片机的熨烫机自动控制系统的设计与实现
介绍基于单片机的熨烫机自动控制系统,给出了系统的硬软件设计与实现,其中DMF50174显示模块和TL549串行A/D转换器使得系统具有较高的性价比。现场投运效果良好,产生了较好的经济效益和社会效益。 我国有12亿人口的服装消费市场,同时又是服装出口大国,随着近年来成衣市场的需求不断增加,小型的服装生产企业发展非常迅速,对小型熨烫系统的需求量越来越多。原有的小型熨烫机多为手动控制设备,对操作人员的操作经验要求较高,由于操作人员操作水平不一,常常出现产品质量问题,损坏率很高。为了满足用户需求,我们自行设计了熨烫控制系统。熨烫机采用AT89C51作为主控制器,采用DMF50174作为显示模块,可实现10个熨烫程序的存储及修改,可根据工序、
[单片机]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved