浅析一种LIN协议驱动器的原理及应用设计

发布者:CuriousObserver最新更新时间:2012-09-21 来源: 21ic 关键字:LIN协议驱动器  操作系统  CAN总线 手机看文章 扫描二维码
随时随地手机看文章

引言:

LIN总线做为CAN总线的有效补充,在低端车身电子领域替代CAN总线,既能满足功能要求,又能节约成本,在对成本更加敏感的国产车上得到大规模应用。不同于CAN总线有专门的协议驱动器,用户不用管理底层的通信而直接进行应用程序的编写1,LIN总线没有专门的协议驱动器,一般需要在SCI模块的基础上用软件实现其底层通信,笔者为某国产车设计了一款LIN主节点产品,结合LIN 2.0规范,首先介绍下LIN协议驱动器的功能,然后从数据链路层、应用层两个方面介绍协议驱动器的关键设计技术。

1 驱动器功能:

LIN规范定义了数据格式、报文格式以及基于时间片的调度通信机制,做为LIN主节点,需要实现的功能包括:

1、报文的封装和发送、接收和解析,根据报文格式填充/提取ID和数据;

2、通信管理,以调度表的方式控制时间片的轮转和相应帧的发送;

3、网络管理,休眠和唤醒;

LIN总线采取8N1的SCI数据格式,协议驱动器在SCI的基础上以软件的形式实现。软件就是“数据+操作”2,做为一个可复用、移植性强的软件模块,其数据结构和API函数的设计是软件模块设计的两个重要组成部分,下面从数据链路层和应用层两个方面介绍下协议驱动器的数据结构设计和API函数设计。

2 数据链路层:

数据链路层主要实现LIN报文的发送及接收,报文格式如图1所示:

 

 

图1 LIN报文格式

LIN报文由报文头+响应组成,报文头包括同步间隔、同步字段和标识符三个部分,其中同步间隔为10bit 0,同步场为0x55,标识符唯一标识该报文;响应包括数据和校验和两个部分,报文数据长度由应用层设计指定,也可以认为由标识符唯一指定,校验和包括经典校验和和增强型校验和两种方式,均采用带进位加法进行计算,不同之处在于经典校验和只对数据做校验,而增强型校验和的校验数据中含有标识符,诊断报文采用经典校验和,其它报文采用增强型校验和。

由于LIN物理层为单线通信,且采取一种多从的时间片轮转方式,不存在CAN总线的竞争总线问题3,所以LIN节点发送数据可以回读到同样的数据,其报文的发送和接收可以统一在SCI的接收中断中,以状态机的形式实现4,状态对应报文的各个组成部分,状态机跳转条件便是数据接收中断。根据LIN报文结构,设计如下形式的结构体,

typedef struct

{

uchar pid;

uchar datalen;

uchar data[8];

uchar checksum;

l_bool done;

l_state state;

l_bool error;

}l_frame;

其中pid为标识符,data为报文数据,datalen为数据长度,checksum为校验和,state为状态机状态,其类型定义如下:

typedef enum

{

l_IDLE,

l_BREAK,

l_SYNC,

l_PID,

l_DATA,

l_CHECKSUM

}l_state;

状态机设计在SCI接收中断处理函数中实现,部分实现如下:

void l_ifc_rx_BcmIfc(void)

{

uchar ch,tmp,i;

ch=Lin_periph[SCIDRL];

switch(Cur_frame.state){

case l_IDLE:

if(0x00==ch){

Cur_frame.state=l_BREAK;

l_SendChar(0x55);

}else{

Cur_frame.state=l_IDLE;

}[page]

break;

case l_BREAK:

if(0x55==ch){

Cur_frame.state=l_SYNC;

l_SendChar(Cur_sch_item->pid);

}else{

Cur_frame.state=l_IDLE;

}

break;

case l_SYNC:

if(Cur_sch_item->pid!=ch){

Cur_frame.state=l_IDLE;

}else{

Cur_frame.state=l_PID;

Cur_frame.pid=Cur_sch_item->pid;

Cur_frame.datalen=Cur_sch_item->datalen;

if(l_SEND==Cur_sch_item->mode){

tmp=Cur_sch_item->data[0];

l_SendChar(tmp);

Cur_frame.data[0]=tmp;

Cur_frame.datalen--;

}

}

break;

case l_PID:

Cur_frame.state=l_DATA;

if(l_SEND==Cur_sch_item->mode){

if(Cur_frame.datalen==0){

Cur_frame.check=l_CalcChksum();

l_SendChar(Cur_frame.checksum);

Cur_frame.done=1;

}else{

tmp=Cur_sch_item->data[Cur_sch_item->datalen-Cur_frame.datalen];

l_SendChar(tmp);

Cur_frame.data[Cur_sch_item->datalen-Cur_frame.datalen]=tmp;

Cur_frame.datalen--;

}

}else{

Cur_frame.data[0]=ch;

Cur_frame.datalen--;

}

break;

case l_DATA:

...

break;

case l_CHECKSUM:

default:

break;

}

}

在声明变量和函数时,均以“l_”开头,这样可以避免跟其他模块在变量和函数命名空间上的冲突,从而增强了可移植性。

3 应用层:

应用层主要实现报文信号访问及通信管理。

3.1 信号访问

首先为每个报文的数据场根据信号在报文数据场中的位置及长度设计相应的结构体,然后以结构体成员变量的方式对信号进行访问。以与本节点通信的一个阳光传感器所发报文为例,报文数据场长度为l_SunSensLen=4,其信号包括阳光采样值、大灯操作请求、小灯操作请求等,报文数据场结构体如下所示:

typedef struct

{

l_bool l_ss_sshealth:1;

l_u8 l_ss_headlampreq:2;

l_bool l_ss_poslampreq:2;

l_u8 :3;

l_u8 l_ss_ssvalue:8;

l_u8 l_ss_headlampswth:8;

l_bool l_ss_sserror:1;

l_u8 :3;

l_u8 l_ss_ssmsgcounter:4;

}l_ss_msgType;[page]

为了使用的方便,定义联合体如下:

typedef union

{

l_u8 data[l_SunSensLen];

l_ss_msgType sunsens;

}l_ss_msgBuf;

为该报文数据场定义全局变量 l_ss_msgBuf l_SunSens;采取“不带复制的访问方式”5,直接对LIN信号赋值和取值,如对l_SunSens.sunsens.l_ss_headlampreq进行读写便实现了对大灯操作请求信号的访问。之所以采取这种方式,是因为采用调度表方式的LIN报文周期固定,信号变化的速度为调度表长度的整数倍,对于LIN应用而言,基本为百毫秒的量级,应用程序对LIN信号数据的访问速度远大于这个变化速度,即在数据产生变化之前已经被访问了,这种方式简单直观而且节省了变量空间。

3.2 通信管理

LIN通信采用时间片轮转的方式调度通信,调度表管理是通信管理的核心,下面先给出调度表条目的数据结构:

typedef struct

{

uchar handle;

uchar pid;

l_Resp_mode mode;

uchar datalen;

uchar *data;

uchar ticks;

}l_sch_table_item;

调度表为l_sch_table_item结构体数组,pid表示该条目对应哪一个报文,mode表示本节点发送还是接收该数据场,*data为该报文数据场结构体的地址,ticks为该时间槽的长度,在对调度表数组进行初始化时,将报文数据场结构体变量的地址赋给调度表条目中的*data,这样便实现了访问方式一节中的“不带复制的访问方式”。调度表是一个环形的序列,调度到表尾则切换到表头继续轮转,调度表的轮转函数如下所示:

void l_sch_tick(void)

{

if(1==TM[LIN_TIMESLOT_MS].overflow_flag){

TM[LIN_TIMESLOT_MS].overflow_flag=0;

if(Cur_sch_item==&l_sch_table_main[l_MAIN_SLOTS-1]){

Cur_sch_item=l_sch_table_main;

}else{

Cur_sch_item++;

}

Cur_frame.state=l_IDLE;

Cur_frame.done=0;

Cur_frame.error=0;

if(Cur_sch_item->pid!=l_Freepid){

l_SendBreak();

}else{

;

}

TimerStart(LIN_TIMESLOT_MS,Cur_sch_item->ticks,0,1);

}

}

应用层功能还包括休眠和唤醒功能,在此不再赘述。

结语

本文实现的LIN协议驱动器模块可以方便得集成到应用程序中,并且独立于具体的处理器和所采用的操作系统,可移植性良好,具有很好的实用价值和借鉴意义。

关键字:LIN协议驱动器  操作系统  CAN总线 引用地址:浅析一种LIN协议驱动器的原理及应用设计

上一篇:浅谈我国电动汽车发展中充电站设施建设的应用
下一篇:浅谈选择导航仪的三大原则

推荐阅读最新更新时间:2024-05-02 22:20

风河发布 Wind River Linux 3.0
设备软件优化(DSO)厂商风河系统公司(Wind River)日前宣布推出其最新版本Linux平台Wind River Linux 3.0。预集成(pre-integrated)、商用级(commercial-grade)、全支持(fully supported)是这个全新Linux平台的三大突出特色。 最新的Wind River Linux 3.0基于全新的Linux 2.6.27内核和GCC 4.3,提供了灵活、通用的开发环境。其中拥有超过500个增值软件包,较其前一版本产品增加了250多个,包括多媒体、图形处理和HMI(人机接口)技术等,例如X.org、GTK+、GNOME或GStreamer等。新版Linux
[嵌入式]
CAN总线错误检测机制
CAN总线是ISO国际标准化的串行通信协议。在汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,CAN总线应运而生,图1为CAN总线在汽车中的应用图。 图 1 汽车中CAN总线的应用 CAN的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机局域网。图2为CAN总线网路图,它的出现为分布式
[嵌入式]
<font color='red'>CAN总线</font>错误检测机制
实时多任务操作系统(RTOS)进入单片机开发领域
1.实时多任务操作系统(RTOS) (1)更加面向硬件系统,而不是操作者 嵌入式系统处理器一般都是独立工作的,没有人的直接参与;即使参与,也没有大量的文字信息输出,这是和桌面计算机有所不同的。因此RTOS着重面向的是硬件,而不是具有完整的人机界面。 (2)实时性 单片机系统的监测、控制、通信等工作都要求实时性,一旦出现有关情况,CPU能够及时响应,刻不容缓。为此,一个实用的RTOS都应具有完善的中断响应机制,保证中断响应潜伏时间足够短。 (3)多任务 半导体技术的发展和应用复杂性的增长促使CPU的处理能力越来越高,当今的一片16位或32位单片机,在运算速度、寻址能力等方面可以相当于8位单片机的几十片之和。在这样强大的处理器上运行应用
[单片机]
一个基于无操作系统的STM32单片机的单片机内存管理器
本代码基于无操作系统的STM32单片机开发,功能强大,可申请到地址空间连续的不同大小的内存空间,且用户接口简单,使用方便。直接贴代码: memory.h: memory.c:
[单片机]
一个基于无<font color='red'>操作系统</font>的STM32单片机的单片机内存管理器
基于CAN总线的分布式电池管理系统
   1  前言   随着高科技及其产业的迅速发展,大存储容量的电池组能源系统已经越来越被人们所重视,在很多领域中都得到广泛地应用,如在汽车产业发展的新方向、新热点——电动汽车及混合动力车的研究及产业化中,将作为车载能源的主要供给者。   蓄电池组是由一定数量的单体电池串联组成的,它可以进行百次至千次的充放电;在使用中必须注意其各个单体电池的各种特性、电池温度、电池的剩余电量及总电流等参数,因为这些参数直接影响电池的使用寿命,必须做到优化运行和有效监控,防止电池出现过充、过放及温度过高等问题,从而延长电池的使用寿命和降低成本,特别是提高电池的可靠性。可以把给电池组配套的电子、控制及数字技术称为数字“电池电子技术”。同样在汽
[嵌入式]
铵泰克龙芯网络安全平台已完美兼容所有国产化操作系统
铵泰克经过一个月时间的严苛测试,铵泰克3A4000网络安全平台最终适配UOS统信服务器和UOS桌面操作系统。通过这两款测试的意义巨大,铵泰克可以为更多的信创客户提供更多选择,也表明铵泰克基于3A4000的网络安全平台,已经完美兼容适配所有国产化操作系统,也是硬件能力的一种完美呈现,可为更多的行业用户提供更完善的支持。 ANS-LS3A4000C6F4是铵泰克自主研发生产的一款多网口安全平台,采用龙芯最新的3A4000 CPU。龙芯3A4000处理器是第三代多核龙芯处理器的首款产品,其结构设计在龙芯3A3000/3B3000基础上进行了大幅升级,集成新一代的GS464v处理器核,支持256位向量指令。龙芯3A4000处理器相比同
[嵌入式]
铵泰克龙芯网络安全平台已完美兼容所有国产化<font color='red'>操作系统</font>
首款国产手机操作系统“元心”手机曝光
        今天上午,中新网报道称,北京元心科技公司推出了第一款真正国产自主的智能移动操作系统“元心”,其最大的形式创新就是自主可控,安全方面有保障;且针对中国消费者做了的操作习惯做了专门的优化。那么,搭载该系统的手机长啥样呢?网友@C科技给出了答案。 从曝光的图片来看,元心系统似乎可以和Android系统共存,而且搭载元心系统的手机还搭载了Android系统,用户在开机时可自由选择启动到哪个系统,但元心是否能兼容Android应用还是个未知数。 而从另一张图片来看,元心系统采用了采用了和iOS类似的操作风格,从外观上看起来和一些第三方Android ROM并无太大区别,但内核应该不太一样。
[手机便携]
详细讨论究竟什么是虚拟化技术
  虚拟化是一个广义的术语,在计算机方面通常是指计算元件在虚拟的基础上而不是真实的基础上运行。虚拟化技术可以扩大硬件的容量,简化软件的重新配置过程。CPU的虚拟化技术可以单CPU模拟多CPU并行,允许一个平台同时运行多个操作系统,并且应用程序都可以在相互独立的空间内运行而互不影响,从而显著提高计算机的工作效率。 虚拟化技术与多任务以及超线程技术是完全不同的。多任务是指在一个操作系统中多个程序同时并行运行,而在虚拟化技术中,则可以同时运行多个操作系统,而且每一个操作系统中都有多个程序运行,每一个操作系统都运行在一个虚拟的CPU或者是虚拟主机上;而超线程技术只是单CPU模拟双CPU来平衡程序运行性能,这两个模拟出来的CPU是不能
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved