基于GPS和3G技术的智能公交终端设计

发布者:水墨人生最新更新时间:2012-10-22 来源: 21ic 关键字:GPS  3G技术  智能公交终端 手机看文章 扫描二维码
随时随地手机看文章

随着经济的发展,城市公交事业有了迅猛的发展,主要表现在:车辆变靓,站点增加,营运时间延长,线路增多,市民出行时已感到这种可喜的变化。但随着生活节奏的加快,对生活品质要求的提高,乘客们早已不能满足于现有的服务质量。

乘客的服务要求不仅体现在乘车过程中,还体现在乘车前后;不仅需要有车乘,而且需要乘好车、好乘车。这些多层次、多元化的需求都是传统运营模式、调度方式所无法做到的,只有智能公交系统的实施才能够从根本上解决这些问题。

智能公交系统的实施,不仅可以给乘客带来巨大的利益,提升城市形象,还以为公交企业节约大量经营成本,提高科学管理水平。因此智能公交系统的建设着重大的社会效益和经济效益。

智能公交系统由以下几部分组成:

1)车载设备子系统,简称“车载终端”;

2)车站智能电子站牌子系统;

3)公交管理系统。

文中主要以车载设备子系统——车载终端为研究对象展开论述。

1 系统整体方案设计

文中研究的是一种基于GPS和3G的智能公交终端,简而言之就是研究车体部分车载终端设备。本文的研究主要分3大部分:视频监控部分;GPS定位部分;通过现有3G网络传输部分。

视频监控部分,主要是在车厢外部设置2个摄像头,车厢内部设置4个摄像头。车厢外部在车的前后各设置一个摄像头,用来监控车体的前后车况,为交通意外发生后的责任判定提供有力证据。

车厢内部在司机处设置1个摄像头,用来监控司机是否有打电话,闲聊等违规操作;在票箱处设置1个摄像头,用来监控偷票漏票现象;在车体中间设置1个摄像头,用来防止乘客碰瓷索赔,车内偷盗等,减少公交车上的犯罪率。下客门设置1个摄像头,用来观看乘客下车情况,乘客是否全都下车,是否有乘客从后门上车等逃票现象。

GPS定位部分,实现完善的导航功能。通过GPS全球定位系统确定公交车所在位置信息,把公交车所在的位置,路况信息可以实时的传送到PC机监控端,这样对车辆的调度起到关键的作用。

3G网络传输部分,近年来我国的3G网络已经很成熟了,可以高效的传输视频信息,本系统就是通过3C网络将公交车上采集到的视频信息和CPS信息传输到控制端,实现公交车运行时的全程监控。系统整体设计方案如图1所示。

2 系统硬件设计

硬件设计上,本系统采用ARM微处理器S3C2440芯片作为主控芯片,系统为存储扩展了128MB的NANDFLASH和64MB的SDBAM,这样可以更好的储存视频信息。系统的外围扩展模块包括通用USB摄像头、GPS模块、3G模块和LCD显示屏。系统的硬件框图如图2所示。

2.1 主控芯片的选择

本系统设计的监控终端要求多路传输,实时性强,低功耗等特点。因此本系统的主控芯片选择了内核为ARM920T的ARM9处理器。由于S3C2440芯片应用比较广泛,片内资源丰富,资料齐全,价格适中,所以选择它作为系统的微处理器。

该处理器是一款基于RISC的32位微处理器,工作频率为400 MHz,最高可达533 MHz,满足了举系统对处理速度的要求,同时该处理器还集成了丰富的通信接口和控制器,有效地降低了系统的复杂度,为系统开发提供了良好的硬件平台。

2.2 摄像头模块的选型与连接

文中采用的是动态视频形式的监控方式。选用的是网眼V2000摄像头,其图像传感器和数字信号处理芯片为Omnivision公司的OV7620和OV511它的成像速度快、图片质量高、成本低,具有良好的通用性。

其采用USB接口,不需要视频卡,可即插即用,使用方使,图像精晰连贯,马赛克比率低。为视频的良好录制提供了可靠的硬件基础。网眼V2000摄像头通过其USB接口直接与CPU上集成的USBHost接口相连。

OV7620是一款高集成度、高分辨率的彩色图像传感器。其分辨率为640x480,传输速率可达30帧/秒。OV7620的控制采用SCCB(Serial Camera Control Bus)协议,可利用其SCCB(Serial Camera Control Bus)接口完成对它的有关设置和读取图像数据。

OV511是摄像头的主控芯片,其片内的高性能压缩引擎可使图像的压缩比达到7:1,保证了从图像传感器到主控制器的快速图像传输。

2.3 GPS模块的选型与连接

本系统的GPS模块采用的是HOLUX的GB-87模块。该模块支持NMEA0183协议,支持V3.3-V5.5电压输入,TTL接口电平,波特率可置。

在本系统中,GR-87模块通过6PIN排线与主板相连,1脚为电源输入脚,接5 V电源,2、3脚为GPS模块的数据接收和发送,5脚接地。

工作时,GPS模块串口2与主控制器S3C2440进行通信,通过设置模块定时输出GPS定位数据,由主控制器对GPS数据进行处理,提取出经纬度,时间等有用信息,为自动报站及正点考核提供可靠数据,保证报站及正点考核功能的实现。

2.4 3G模块的选型与连接

根据无线接口技术的不同,现有3G技术可以分为联通的WCDMA技术,电信的CDMA2000技术和移动的TD-SCDMA技术。

考虑到传输带宽、网络稳定性、实用性等因素,本系统采用电信CDMA2000作为无线网络传输,采用中兴公司的MC8630模块作为视频数据传输模块。

MC8630模块具有语音、短信、数据业务和GPS等功能,工作频段为800MHz,通过双天线接收分集技术和均衡技术,上行速率最高可达3.1 Mbit/s下行速率最高可达3.1 Mbit/s。可以通过USB接口将MC8630模块连接到MIN2440(S3C2440为主芯片的开发板)处理器上,实现封装后的视频数据传输。

3 系统软件设计

目前常见的嵌入式操作系统主要有WinCE、Linux、Vxworks等几种。其中Linux操作系统的源码完全开放。由于其自身具有高效稳定、网络资源丰富、内核小、执行速度快,可移植性好等优点,被广泛应用于嵌入式系统领域。所以,选择嵌入式Linux操作系统作为本系统的软件开发平台。

在软件设计方面,首先需要在单片机和PC机之间建立交叉编译环境,用来编译引导程序和Linux内核。然后完成引导程序Bootloa der的移植;配置和编译Linux内核;制作根文件系统以及底层驱动程序。[page]

最后,通过编写上层应用程序完成图像采集、GPS信息采集、3G传输等功能。下面几节详细的介绍了几个主要程序的设计思想。

3.1 图像采集程序

在视频采集方面,本文采用的摄像头是网眼V2000,它是一款是以ov511为主控芯片的摄像头。选用它的原因是由于Linux内核自带ov511驱动,所以不用再自己编写摄像头的驱动程序,只需在定制内核的时候选中即可。为开发节省了时间。

当Linux系统正常启动后,插上V2000摄像头,如果成功加载驱动,将为摄像头在/dev/v41/目录下创建设备文件device0,上层应用程序即可通过此设备文件访问摄像头,实现拍摄图像的功能。嵌入式系统平台已搭建成功,要实现实时地获取图像,就需要利用V4L(Vidio For Linux)编程接口实现图像采集程序了。

考虑到摄像头采集的640x480的RGB图像数据量较大,这里用图像压缩函数put_image_jpeg将图像转化为JPEG格式,这样存储时就减少了占用的NandFlash空间,同时通过3G网络回传监控中心时,也减少了传输费用和确保传送成功。

3.2 GPS解析程序

GPS接收机HOLUX的GR-87模块输出数据格式符合NMEA.183标准。NMEA.0183协议是由美国国家海洋电子协会制定的一种串行通信的数据协议,所有输入输出信息均为一行ASCII字符。它的一条消息称为语句(Sentence),每条语句都以“$”开始,以回车换行符()结束,中间是用逗号分隔的若干个域。

由于此GPS模块设置信息掉电丢失,在每次系统启动时均要对该GPS模块进行初始化。将模块设置成每秒钟输出一次GPS信息。系统启动后,模块接收GPS信息,然后解析出GPS信息,根据解析出来的经纬度信息与数据区中存储的站点信息比较,计算出实际距离。如果距离到达阀值时,启动GPS报站中断。

该GPS模块接收模块遵循NMEA.0183协议,可以输出多种格式的数据帧,均以“MYM”开头。输出数据采用的是ASCII码字符,内容包含了纬度、经度、速度、日期、航向及卫星状况等信息。该系统所使用的仅限于$GPRMC定位数据帧格式。

系统启动后,通过串口对GPS模块进行设置,由于系统对实时性要求不高,将GPS设置为每秒钟输出一次RMC数据。提取GPRMC语句的思路是设置一个数据缓冲区,把接收到的GPS数据都放入这个缓冲区,当缓冲区满了的时侯就在缓冲区中查找是否接受到GPRMC定位语句,如果没有接收到则重新接GPS数据。

如果找到GPRMC定位语句则还要判断该语句在缓冲区中的位置离缓冲区的最大字节数是否大于62个字节(因为本程序中需要的GPRMC定位语句所包含的字节数为62),然后通过多程序提取相关经纬度、时间和速度等信息并通过数据处理线程进行相关处理。运行过程如图3所示。

3.3 3G模块解析程序

MC8630模块驱动可以通过驱动源码交叉编译生成。MC8630模块的加载和拨号连接的过MC8630模块驱动可以通过驱动源码交叉编译生成。MC8630模块的加载和拨号连接的过程如下:

1)在编译前首先要确认编译驱动和编译内核的编译环境相同,也就是需要相同版本号的交叉编译工具(本系统Linux版本号为2.6);

2)修改驱动源码Makefde文件,包括添加内核源码目录和编译工具;

3)Make编译之后,生成ztemt.ko;

4)insmod ztemt.ko,生成4个设备节点/dev/ttyUSB0-ttyUSB3;

5)mknod/dev/ttyUSB0 c 188 0,创建设备节点;

6)编写Linux下拨号脚本、chat配置文件和账号密码配置文件;

7)添加内核选项,编译支持PPP协议的内核;

8)pppd call evdo拨号连接,ifconfig查询网络是否连接;

9)ppp-off中断连接。

4 结束语

本系统设计的智能公交终端采用先进的3G/GPS技术,通过对公交车辆运行时的信息的采集、传输和处理,实现了对公交运营车辆的实时监控和调度,迅速调整公交车辆的运行状况,提高车辆工作的效率,使公交资源实现最佳利用和分配,达到公交的智能化。

关键字:GPS  3G技术  智能公交终端 引用地址:基于GPS和3G技术的智能公交终端设计

上一篇:防抱死制动系统的优点及局限性对比分析
下一篇:对汽车电子系统低油耗设计的讨论

推荐阅读最新更新时间:2024-05-02 22:23

赛格车圣推出首款酒驾警示车载GPS系统
      日前,赛格车圣江门分公司在逸豪酒店举办了主题为“共赢汽车网络时代”的2010年新品发布会暨答谢会。在新品发布会上,赛格车圣宣布推出全球首款酒驾警示GPS系统和专车专用Telematics终端系统,引领车主进入全新的汽车网络时代。赛格车圣的相关负责人及大昌行集团、利泰集团、新协力、大合、广本锦伦、广本骏兴、华通等江门知名4S店的老总等出席了本次活动。    酒驾警示GPS系统   最大限度降低酒驾风险   众所周知,酒后驾驶作为公共交通的一大顽疾,早已被公众所诟病,政府为遏制这一现状,保证人民的生命财产安全,从年初开始加大了惩治力度,由一次扣6分调整为一次扣12分,但酒后驾驶的情况还是屡见不鲜,这与国人的酒文
[汽车电子]
基于GSM的移动监控定位系统设计
1   引   言      随着社会的发展和通信技术的进步,人们对移动目标监控的要求越来越高,不仅需要知道移动目标的位置,还需要对移动目标的视频图像、报警信息、运行状态等数据进行实时监控和处理。例如,移动监控定位系统可协助对长途客车的管理,指挥中心通过分析客车发送的GPS数据确定客车的位置,判断是否超速行使,客车若出现故障、遭遇事故或劫车事件,可及时通知指挥中心,指挥中心再通知交通、公安、医院等部门进行紧急处理,在客车中加装摄像头还可有效预防行车途中的犯罪事件。另一方面,司机通过指挥中心可以了解行使前方的地理信息、天气状况、交通情况等。此外,移动监控定位系统在渔船出海作业、城市出租车调度、公安治安巡防、银行运钞车监控等领域都
[网络通信]
北斗精度可达毫米级 让国外万元设备降到白菜价
  有媒体报道,中国计划在今年至少发射4颗 北斗 三号全球组网卫星,这是到目前为此精度最高的 北斗 卫星,其定位精度要比原先的系统提高2至3倍,甚至媲美或超过美国的 GPS ,目标是在2020年实现 北斗 卫星导航系统覆盖全球。下面就随安防电子小编一起来了解一下相关内容吧。   中国北斗将会在轨道上组成一个卫星运行大网,保证北斗覆盖区域的定位更加稳定,具备提供米级、亚米级、分米级,厘米甚至毫米级的优异服务。如果用这种高精度应用解决约车、道路监测、无人驾驶技术应用等服务,一定能成为北斗的特色,带动整个服务产业的革命性变化。   目前,中国在北斗导航领域已具备了一定的产业基础,我国最自豪的产品是核心芯片达到了国际最先进的水平,40纳
[安防电子]
中国“北斗”万米定位误差仅毫米,为什么还在用美国的GPS?
众所周知,我们使用的手机定位大都是美国的GPS,但国产北斗导航明明早在2012年就已经正式对亚太地区提供无源定位、导航、授时服务,中国自主研发的多星多频高精度软硬件系统甚至让万米高空的卫星定位信息误差达到毫米级别。下面就随网络通信小编一起来了解一下相关内容吧。 手机定位 然而5年过去了,至今我们翻开自己的手机进行导航时,用的仍然还是美国的GPS而不是北斗?中国的北斗差在哪儿? 一、何为中国北斗导航系统? 中国北斗卫星导航系统简称北斗系统,英文缩写BDS。它是由我国自主研发创建并且独立运行的,并且与世界上其他卫星系统兼容共用的全球卫星导航系统,可以在全球范围内,全天候为各种用户进行高精度、高效率、高可靠性的定位、导航、授时服
[网络通信]
嵌入式GPS语音导航系统中MP3的解码与播放
  引言   近年来,电子技术的迅猛发展,使得嵌入式系统在越来越广泛的领域得到应用。嵌入式系统平台的功能也越来越强大,复杂度也越来越高,同时对其开发的难度和要求也越来越高。在开发过程中需要将应用软件和系统软件作为一个整体考虑,而且软件和硬件的联系也更加密切。所以,嵌入式系统的开发是一个复杂的过程。随着嵌入式系统性能的大幅度提高,老式的GPS导航仪已开始向嵌入式方向发展。嵌入式GPs导航仪已越来越便携,功能越来越强大,语音导航和媒体功能已成为嵌入式GPS导航仪的一大突出的亮点。所以,MP3音频解码与播放技术现已成为嵌入式GPS导航系统中的一项基本技术。MP3的全称是MPEG Audio Layer 3,是目前流行的一种音频编码方案。
[单片机]
嵌入式<font color='red'>GPS</font>语音导航系统中MP3的解码与播放
ARM9的快速对星装置原理及设计实现
1 系统概述 该装置通过GPS采集地理信息、电子罗盘采集姿态信息,根据GPS采集的地理信息,结合通信卫星位置,计算出对星所需要的标准方位、俯仰、极化参数,同时计算出当地、当年磁偏角数据;通过采集电子罗盘数据,得到初步方位、俯仰、极化数据,其中俯仰和极化均为天线实际指向值,但是方位值是以磁北为标准测量值;通过GPS得到的磁偏角数据,对从电子罗盘得到的以磁北为标准的方位值进行修正,得到比较准确的、以真北为标准的真实方位数据。其系统结构如图1所示,其中基于EVC4平台的多线程应用程序流程结构如图2所示。 2 硬件设计 本装置在设计上,选择S3C2440作为主控制器构成硬件平台,利用其丰富的外部接口和高速处理能力,达到实时采集数
[单片机]
ARM9的快速对星装置原理及设计实现
研究人员开发微型光学陀螺仪 可在无GPS信号时帮助自动驾驶汽车导航
目前,全球小型移动设备的定位和导航的需求日益增长,而用于大型交通工具(船舶、飞机等)的昂贵陀螺仪的细分市场已被占领。随着受控设备尺寸的减小,需要更紧凑的惯性导航和定向系统。在这样的条件下,为各种广泛的应用开发相对廉价和小型的陀螺仪成为该领域的首要任务之一。 (图片来源:圣彼得堡国立电子技术大学) 据外媒报道,由圣彼得堡国立电子技术大学(ETU“LETI”)激光测量和导航系统学院首席科学助理Vladimir Venediktov领导的研究小组正在研究全球首个基于圆形共焦谐振器的微型光学陀螺仪。 该方法利用基于角速度测量方法的微光学谐振陀螺仪研究,旨在打造一种微型、廉价、高度精确的陀螺仪,帮助无人机和自动驾驶汽车在没有G
[汽车电子]
研究人员开发微型光学陀螺仪 可在无<font color='red'>GPS</font>信号时帮助自动驾驶汽车导航
在OTA暗室中测GPS设备灵敏度方法讨论(二)
既然要考虑有源天线及其LNA,那仅在RF前端进行射频链接测量是不够的,必须以通过天线,空间耦合的方式来进行测量才更为接近真实情况。空间耦合的方式可以有两种,一种是通过将接收机置入三角锥以达到与外界电磁环境隔离的效果,另外一种是在全电波暗室中进行灵敏度甚至增益测量。但一般三角锥仅能提供的空间及收发距离有限,并不能满足天线测试的远场要求。以普通车载GPS接收机为例,其应满足的远场测试距离往往达到80cm,而且只能对一个方向进行灵敏度测量,这种测试方法一般在做研发的时候可以初步评估整个接收机的性能。但要做到对产品的精确测量,还是需要专业的全电波暗室。下面我们将着重讨论如何在全电波暗室中进行接收灵敏度的测量。 系统的搭建 下图为一般的在
[测试测量]
在OTA暗室中测<font color='red'>GPS</font>设备灵敏度方法讨论(二)
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved