多电机伺服控制广泛应用于各种电力传动自动控制系统中,如配料、传动等生产过程。伺服系统中电机控制性能和多电机间协调控制的好坏直接影响生产过程的质量,如何高效管理、方便应用、实时控制是多电机伺服系统生产领域亟待解决的首要问题。因此,本文提出一种基于CAN总线技术的多轴运动控制数字交流伺服系统。
现场总线技术解决了传统总线插板I/O模块多,干扰严重、系统软件编写复杂、系统硬件兼容性差等问题。大大减轻了现场信号连接的繁琐与费用,提高了信号传输的精度与灵活性,给安装、调试和维护带来诸多方便,为现场用户带来巨大的经济效益,代表着自动化领域发展的一个重要方向. CAN总线技术
随着工业现场控制和自动化技术的不断进步,传统的通信模式已不能满足现代工程需要。CAN(Controller Area Network)总线是80年代初德国Bosch公司为解决现代汽车中众多控制与测试仪器间数据交换而开发的一种串行数据通信协议,是一种性能先进、价格低廉、保密性好的现场总线(Field Bus)技术,能够有效支持分布式控制或实时控制串行通信网络[2>。CAN总线中各节点都有权利向其它节点发送信息。通信介质可以是双绞线、同轴电缆或光纤,主要技术特点有:
1,是一种多主总线
网络上任一个节点均可在任意时刻主动向网络上其它节点发送信息,多主站依据优先机制进行总线访问;
2,非破坏性基于优先权总线仲裁技术
采用非破坏性基于优先权总线仲裁技术结构,大大节省总线冲突仲裁时间,在重负荷下表现出良好性能;
3,具有多种传送数据功能
具有点对点,一点对多点(成组)及全局广播传送数据功能;
4,节点数目多
直接通讯距离最远可达10km(传输速率为5kbps),最高通讯速率可达1Mbps(传输距离为40m);
5,可靠性高
数据链路层采用短帧结构,实时性高,纠错效果好,每帧信息都有CRC校验及其它校验措施,数据出错率低,可靠性高;
6,故障自动判别
发送期间若丢失仲裁或因出错而遭破坏的帧可自动重发,暂时错误和永久性故障节点判别及故障节点自动脱离CAN总线。
CAN总线系统由CAN网络节点、转发器节点和上位机构成。总线技术遵循现场总线协议,将分布在不同位置,用途各异的测量仪表、控制设备互联成网,并可接入Intranet和Internet网络。现场总线技术的关键标志是它能支持双向多变量、总线式全数字通讯。传统4~20mA模拟直流回路只能在一根两芯电缆中单向传输一个参数,随着系统结构的日益复杂和信息量的增加,4~20mA电流环传输成为制约信息传输的瓶颈,所以现场总线替代4~20mA模拟信号标准已成为控制系统发展的必然趋势。
基于CAN总线技术的多机伺服系统
CAN总线控制网络结构
基于CAN总线技术的多电机伺服控制系统网络结构如图1所示,系统由上位机、CAN总线、现场伺服单元节点组成。数控系统上位机通过CAN总线控制网络节点任一伺服单元,数字伺服与数控系统之间数据传输可分为实时性数据信息和非实时性数据信息两类。实时性数据指参与控制器实时位置、速度、转矩等控制指令和反馈信息,传输速度要求较高。非实时性数据主要是指控制器参数设置、功能设定、诊断功能、伺服状态与报警等信息,传输速度相对较低。[page]
CAN接口适配器是上位机与伺服单元数据传输和控制的桥梁,伺服单元采集现场的数据通过总线传给上位机,实现实时监视和控制。
数字伺服系统网络硬件与软件设计
CAN总线接口硬件电路
数控系统上位机采用研华公司PCL-841卡实现CAN总线通讯,伺服驱动系统采用TI公司TMS320LF2407A片内CAN控制器[3>。该控制器全面兼容CAN2.0B协议,具有标准和扩展标识符,有数据帧和远程帧,2407A片内CAN总线控制器与CAN物理总线接口采用82C250驱动器芯片。82C250采用阻抗为120Ω双绞线作通讯介质,信号采用差动接收和发送模式,抗干扰能力强,最高通讯速率可达1Mbps。有三种不同工作方式:高速、斜率控制和待机。本系统采用斜率控制,以降低射频干扰。为了增加抗干扰能力,保护CAN控制器,在TMS320LF2407A与82C250之间加高速光电隔离器,光电隔离器采用HP公司HCPL-2630芯片,速度为10MHz,电路如图2所示。
CAN总线网络控制软件包括网络应用层协议、节点功能流程和编码等的配置和设计[4>。
邮箱初始化配置
包括对管脚的配置、波特率的设定、邮箱的收发配置等。首先,配置MCRB寄存器,将IOPC6和IOPC7引脚配置成特殊功能,即CANRX和CANTX;其次,配置MDER寄存器,即配置邮箱使能和邮箱2~3功能;最后,对屏蔽ID寄存器进行配置,可以屏蔽任意位ID,这种寄存器只对接收邮箱起作用。 ;CAN邮箱初始化配置
CAN_INIT:
LDP#DP_PF2
LACL MCRB
;配置CAN引脚
OR#0C0H
;IOPC6,IOPC7配置为特殊功能:CANRX,CANTX
SACLMCRB
;CAN位定时器配置
LDP #DP_CAN
SPLK#0040H,MDER;MD2 =1,MBX2为发送方式
SPLK#0FFFFH,CAN_IFR
;清全部CAN中断标志
SPLK#07FFFH,LAM1_H
;设置邮箱2、3屏蔽ID寄存器0
SPLK#0FFFFH,LAM1_L;则ID必须匹配
波特率设定
主要与3个寄存器有关,即SCSR1(系统控制和状态寄存器1)、BCR1(位配置寄存器1)和BCR2(位配置寄存器2)。配置前要确定波特率和晶振频率,当对位定时器进行配置时,CAN控制器必须处于复位模式下,即CCR=1。
SPLK #1000H,MCR;CCR=1改变配置请求W_CCE:BITGSR,#0Bh;等待改变配置使能
BCNDW_CCE,NTC;当CCE=1时即可配置BCR2、BCR1寄存器
SPLK#01H,BCR2;波特率预分频寄存器
SPLK#0033H,BCR1;波特率设置为1M
LACLMCR [page]
邮箱收发配置
在数据域改变前首先要禁用邮箱,然后置位数据域,改变请求。再设置邮箱ID和信息控制寄存器。若是发送邮箱,则在数据域存放预发送数据,若是接收邮箱,则清空接收缓存。
;写CAN邮箱内容前寄存器设置
LDP#DP_CAN
SPLK #0040H,MDER ;不使能邮箱,邮箱2设为接收方式
SPLK #0103H,MCR;CDR=1,数据区改变请求
;写CAN邮箱内容
LDP#DP_CAN2
SPLK #2447H,MSGID2H;设置邮箱2控制字及ID
;IDE=0,AME=0,AAM=0
;标准方式为MSGID2H[12~2>
SPLK#0FFFFH,MSGID2L
SPLK#08H,MSGCTRL2;设置控制域
;数据长度DCL=8,RTR=0数据帧
SPLK#00000H,MBX2A;邮箱2信息初始化
SPLK#00000H,MBX2B
SPLK#00000H,MBX2C
SPLK#00000H,MBX2D
SPLK#2447H,MSGID3H;设置邮箱3的标识符
SPLK#0FFFFH,MSGID3L
SPLK#08H,MSGCTRL3;RTR=0,DCL=8
SPLK#02211h,MBX3A;邮箱3信息初始化
SPLK#04433h,MBX3B
SPLK#06655h,MBX3C
SPLK#08877h,MBX3D
;写CAN邮箱内容后寄存器设置
LDP#DPCAN
SPLK#0480H,MCR;DB0=1,AB0=1,STM=0
SPLK#04CH,MDER;ME3=1,MBX3发送,ME2=1接收
SPLK#0F7FFH,CAN_IMR;中断MBX3无效,MBX2使能,
;中断优先级
SPLK#0FFFFH,CAN_IFR;清全部中断标志
RET
邮箱中断设置CAN模块专属中断寄存器有CAN_IFR和CAN_IMR,使用方法与一般中断寄存器相同。但TMS320LF2407A 采用二级中断方式,高优先级模式的CAN邮箱中断对应INT1,高优先级CAN错误中断对应INT2;而低优先级CAN邮箱中断和CAN错误中断都对应INT5。所以在程序中要开放对应一级中断。接收帧ID的读入在接收事件中,通常一个邮箱要接收多节点帧。因此,信息帧ID的读出也很重要。不管有没有屏蔽,所接收信息帧的ID会被置入MSGIDnH和MSGIDnL,但接收邮箱的ID并没有改变[5>。
程序框图如图3所示,实验程序使用邮箱2接收,邮箱3发送。通讯软件可以采用查询方式或中断方式,主要包括CAN控制器初始化程序、接收邮箱与发送邮箱设置、发送程序、接收程序。
发送程序只需要设定发送控制寄存器相应位;接收程序要完成:
读取已接收的邮箱标识符格式;
读取接收的标识符;
读取接收的数据长度;
读取接收的数据值。
上位机通过适配器与CAN总线连接,用VC6.0编写监控软件,并定义上位机作为局域网操作服务器,用户通过它可以对各个伺服单元进行操作。
结语
CAN总线具有良好的网络通信功能、高可靠性、抗干扰能力强且经济实用,是一种很有前途的现场总线技术。它的应用将为分布式运动控制提供一种新的解决方案,会受到人们越来越多的重视。新一代的智能数字伺服系统通过CAN总线于开放式数控系统互联,是运动控制领域发展的一个重要方向。
关键字:CAN总线 数字交流 伺服系统
引用地址:基于CAN总线技术的数字交流伺服系统研究
现场总线技术解决了传统总线插板I/O模块多,干扰严重、系统软件编写复杂、系统硬件兼容性差等问题。大大减轻了现场信号连接的繁琐与费用,提高了信号传输的精度与灵活性,给安装、调试和维护带来诸多方便,为现场用户带来巨大的经济效益,代表着自动化领域发展的一个重要方向. CAN总线技术
随着工业现场控制和自动化技术的不断进步,传统的通信模式已不能满足现代工程需要。CAN(Controller Area Network)总线是80年代初德国Bosch公司为解决现代汽车中众多控制与测试仪器间数据交换而开发的一种串行数据通信协议,是一种性能先进、价格低廉、保密性好的现场总线(Field Bus)技术,能够有效支持分布式控制或实时控制串行通信网络[2>。CAN总线中各节点都有权利向其它节点发送信息。通信介质可以是双绞线、同轴电缆或光纤,主要技术特点有:
1,是一种多主总线
网络上任一个节点均可在任意时刻主动向网络上其它节点发送信息,多主站依据优先机制进行总线访问;
2,非破坏性基于优先权总线仲裁技术
采用非破坏性基于优先权总线仲裁技术结构,大大节省总线冲突仲裁时间,在重负荷下表现出良好性能;
3,具有多种传送数据功能
具有点对点,一点对多点(成组)及全局广播传送数据功能;
4,节点数目多
直接通讯距离最远可达10km(传输速率为5kbps),最高通讯速率可达1Mbps(传输距离为40m);
5,可靠性高
数据链路层采用短帧结构,实时性高,纠错效果好,每帧信息都有CRC校验及其它校验措施,数据出错率低,可靠性高;
6,故障自动判别
发送期间若丢失仲裁或因出错而遭破坏的帧可自动重发,暂时错误和永久性故障节点判别及故障节点自动脱离CAN总线。
CAN总线系统由CAN网络节点、转发器节点和上位机构成。总线技术遵循现场总线协议,将分布在不同位置,用途各异的测量仪表、控制设备互联成网,并可接入Intranet和Internet网络。现场总线技术的关键标志是它能支持双向多变量、总线式全数字通讯。传统4~20mA模拟直流回路只能在一根两芯电缆中单向传输一个参数,随着系统结构的日益复杂和信息量的增加,4~20mA电流环传输成为制约信息传输的瓶颈,所以现场总线替代4~20mA模拟信号标准已成为控制系统发展的必然趋势。
基于CAN总线技术的多机伺服系统
CAN总线控制网络结构
基于CAN总线技术的多电机伺服控制系统网络结构如图1所示,系统由上位机、CAN总线、现场伺服单元节点组成。数控系统上位机通过CAN总线控制网络节点任一伺服单元,数字伺服与数控系统之间数据传输可分为实时性数据信息和非实时性数据信息两类。实时性数据指参与控制器实时位置、速度、转矩等控制指令和反馈信息,传输速度要求较高。非实时性数据主要是指控制器参数设置、功能设定、诊断功能、伺服状态与报警等信息,传输速度相对较低。[page]
CAN接口适配器是上位机与伺服单元数据传输和控制的桥梁,伺服单元采集现场的数据通过总线传给上位机,实现实时监视和控制。
数字伺服系统网络硬件与软件设计
CAN总线接口硬件电路
数控系统上位机采用研华公司PCL-841卡实现CAN总线通讯,伺服驱动系统采用TI公司TMS320LF2407A片内CAN控制器[3>。该控制器全面兼容CAN2.0B协议,具有标准和扩展标识符,有数据帧和远程帧,2407A片内CAN总线控制器与CAN物理总线接口采用82C250驱动器芯片。82C250采用阻抗为120Ω双绞线作通讯介质,信号采用差动接收和发送模式,抗干扰能力强,最高通讯速率可达1Mbps。有三种不同工作方式:高速、斜率控制和待机。本系统采用斜率控制,以降低射频干扰。为了增加抗干扰能力,保护CAN控制器,在TMS320LF2407A与82C250之间加高速光电隔离器,光电隔离器采用HP公司HCPL-2630芯片,速度为10MHz,电路如图2所示。
CAN总线网络控制软件包括网络应用层协议、节点功能流程和编码等的配置和设计[4>。
邮箱初始化配置
包括对管脚的配置、波特率的设定、邮箱的收发配置等。首先,配置MCRB寄存器,将IOPC6和IOPC7引脚配置成特殊功能,即CANRX和CANTX;其次,配置MDER寄存器,即配置邮箱使能和邮箱2~3功能;最后,对屏蔽ID寄存器进行配置,可以屏蔽任意位ID,这种寄存器只对接收邮箱起作用。 ;CAN邮箱初始化配置
CAN_INIT:
LDP#DP_PF2
LACL MCRB
;配置CAN引脚
OR#0C0H
;IOPC6,IOPC7配置为特殊功能:CANRX,CANTX
SACLMCRB
;CAN位定时器配置
LDP #DP_CAN
SPLK#0040H,MDER;MD2 =1,MBX2为发送方式
SPLK#0FFFFH,CAN_IFR
;清全部CAN中断标志
SPLK#07FFFH,LAM1_H
;设置邮箱2、3屏蔽ID寄存器0
SPLK#0FFFFH,LAM1_L;则ID必须匹配
波特率设定
主要与3个寄存器有关,即SCSR1(系统控制和状态寄存器1)、BCR1(位配置寄存器1)和BCR2(位配置寄存器2)。配置前要确定波特率和晶振频率,当对位定时器进行配置时,CAN控制器必须处于复位模式下,即CCR=1。
SPLK #1000H,MCR;CCR=1改变配置请求W_CCE:BITGSR,#0Bh;等待改变配置使能
BCNDW_CCE,NTC;当CCE=1时即可配置BCR2、BCR1寄存器
SPLK#01H,BCR2;波特率预分频寄存器
SPLK#0033H,BCR1;波特率设置为1M
LACLMCR [page]
邮箱收发配置
在数据域改变前首先要禁用邮箱,然后置位数据域,改变请求。再设置邮箱ID和信息控制寄存器。若是发送邮箱,则在数据域存放预发送数据,若是接收邮箱,则清空接收缓存。
;写CAN邮箱内容前寄存器设置
LDP#DP_CAN
SPLK #0040H,MDER ;不使能邮箱,邮箱2设为接收方式
SPLK #0103H,MCR;CDR=1,数据区改变请求
;写CAN邮箱内容
LDP#DP_CAN2
SPLK #2447H,MSGID2H;设置邮箱2控制字及ID
;IDE=0,AME=0,AAM=0
;标准方式为MSGID2H[12~2>
SPLK#0FFFFH,MSGID2L
SPLK#08H,MSGCTRL2;设置控制域
;数据长度DCL=8,RTR=0数据帧
SPLK#00000H,MBX2A;邮箱2信息初始化
SPLK#00000H,MBX2B
SPLK#00000H,MBX2C
SPLK#00000H,MBX2D
SPLK#2447H,MSGID3H;设置邮箱3的标识符
SPLK#0FFFFH,MSGID3L
SPLK#08H,MSGCTRL3;RTR=0,DCL=8
SPLK#02211h,MBX3A;邮箱3信息初始化
SPLK#04433h,MBX3B
SPLK#06655h,MBX3C
SPLK#08877h,MBX3D
;写CAN邮箱内容后寄存器设置
LDP#DPCAN
SPLK#0480H,MCR;DB0=1,AB0=1,STM=0
SPLK#04CH,MDER;ME3=1,MBX3发送,ME2=1接收
SPLK#0F7FFH,CAN_IMR;中断MBX3无效,MBX2使能,
;中断优先级
SPLK#0FFFFH,CAN_IFR;清全部中断标志
RET
邮箱中断设置CAN模块专属中断寄存器有CAN_IFR和CAN_IMR,使用方法与一般中断寄存器相同。但TMS320LF2407A 采用二级中断方式,高优先级模式的CAN邮箱中断对应INT1,高优先级CAN错误中断对应INT2;而低优先级CAN邮箱中断和CAN错误中断都对应INT5。所以在程序中要开放对应一级中断。接收帧ID的读入在接收事件中,通常一个邮箱要接收多节点帧。因此,信息帧ID的读出也很重要。不管有没有屏蔽,所接收信息帧的ID会被置入MSGIDnH和MSGIDnL,但接收邮箱的ID并没有改变[5>。
程序框图如图3所示,实验程序使用邮箱2接收,邮箱3发送。通讯软件可以采用查询方式或中断方式,主要包括CAN控制器初始化程序、接收邮箱与发送邮箱设置、发送程序、接收程序。
发送程序只需要设定发送控制寄存器相应位;接收程序要完成:
读取已接收的邮箱标识符格式;
读取接收的标识符;
读取接收的数据长度;
读取接收的数据值。
上位机通过适配器与CAN总线连接,用VC6.0编写监控软件,并定义上位机作为局域网操作服务器,用户通过它可以对各个伺服单元进行操作。
结语
CAN总线具有良好的网络通信功能、高可靠性、抗干扰能力强且经济实用,是一种很有前途的现场总线技术。它的应用将为分布式运动控制提供一种新的解决方案,会受到人们越来越多的重视。新一代的智能数字伺服系统通过CAN总线于开放式数控系统互联,是运动控制领域发展的一个重要方向。
上一篇:485集线器在总线型数据采集系统的应用分析
下一篇:基于DeviceNet现场总线的卷烟厂制丝线贮丝房控制系统
推荐阅读最新更新时间:2024-05-02 22:24
基于USB的CAN总线适配器设计
现场总线作为二十世纪80年代发展起来的新兴技术,在工业现场已有了广泛的应用。在比较有影响力的几种现场总线中,CAN总线以其突出的优点不仅大量应用于工业现场,而且在楼宇自动化、智能终端设备等民用领域也有了长足的发展。 现场总线网络技术的实现需要与计算机相结合。以往CAN总线网络与计算机的连接采用RS232、ISA或PCI接口。但是随着计算机接口技术的发展,ISA接口已经逐渐被淘汰;RS232接口数据传输率太低;PCI虽然仍是高速外设与计算机接口的主要渠道,但其主要缺点是占用有限的系统资源、设计复杂、需有高质量的驱动程序保证系统的稳定,且无法用于便携式计算机的扩展。随着USB1.1、USB2.0规范的相继制定,为外设与计算机的接口提出了
[嵌入式]
基于CAN总线的车灯控制系统设计方案
摘要: 给出了一种基于CAN 总线的车灯控制系统设计方案, 介绍了车灯控制系统的硬件设计和软件设计, 对系统的整体结构、硬件配置、软件功能分别作了详细说明。试验表明, 该系统结构简单、性能可靠, 具有广阔的应用前景。 0 引言 CAN( Contr oller Area Netw or k) 是德国博世公司在20 世纪80 年代初为汽车业开发的一种车载专用串行数据通信总线, 满足SAE ( Society o f Automo bileEng ineer) 对C 类高速车载网络( ≤1Mb/ s) 的要求, 适合动力传动和底盘电子系统的信息传输与控制, 因此也适合一般车载电子系统的信息传输与控制。 与传统技术相
[汽车电子]
CAN总线—PROFIBUS-DP总线网关的实现方法
1 引言
在80年代中期,为了满足不同自动化领域的应用需求,出现了拥有不同技术特点的现场总线。每一种现场总线都有自己的应用领域,并且都力图拓展其应用领域,以扩张其技术垄断范围。但每种现场总线都以一个或几个大型跨国公司为背景,公司的利益与总线的发展息息相关。这些公司竞争的结果是多种总线协调共存。据不完全统计,目前国际上有200多种现场总线,而其中占据市场主流的现场总线有十几种 。现场总线的多样性,为总线设备用户提供了更多产品选择的同时,也为总线用户带了总线设备间兼容性问题。工厂在扩建,改建等过程中很可能会选用与原先现场设备总线标准不同的产品,这些设备由于使用不同的现场总线,彼此间不能实现数据共享,于是就降低了设备间功能互补的
[网络通信]
电液伺服机构与CAN总线接口设计
1前言
在新型导弹制导和控制系统中采用总线式的数据传输方案,是解决现行的导弹飞行控制系统中,通过点对点直接连接的电缆网传输模拟信号造成的结构复杂、可靠性低、系统的电磁兼容性与抗毁伤能力等诸多弊病的一个较好的途径。电液伺服机构是导弹控制系统中重要的组成部分。它的性能往往严重影响到导弹的控制精度,甚至决定飞行的成败。在总线式导弹控制系统中,导弹电液伺服机构将作为总线上的一个节点挂接在总线上,因此必须设计一个将总线与电液伺服机构连接起来的 接口 。导弹总线式控制系统结构如图1所示。
在导弹飞行中,惯性敏感元件获得导弹的飞行参数后,送到弹上计算机,经过计算机运算后形成控制指令,指令被送到导弹的电液伺服机构,通
[嵌入式]
CAN总线简述
一、CAN通信概述
CAN ( Controller Area Network ) 即控制器局域网络。由于其高性能、高可靠性、及独特的设计,CAN越来越受到人们的重视。国外已有许多大公司的产品采用了这一技术。
CAN最初是由德国的BOSCH公司为汽车监测、控制系统而设计的。现代汽车越来越多地采用电子装置控制,如发动机的定时、注油控制,加速、刹车控制(ASC)及复杂的抗锁定刹车系统(ABS)等。由于这些控制需检测及交换大量数据,采用硬接信号线的方式不但烦琐、昂贵,而且难以解决问题,采用CAN总线上述问题便得到很好地解决。
二、CAN总线特点
CAN总线是一种
[嵌入式]
基于CAN/RS485双层网络的远程抄表系统设计
1. 引言 目前我国普遍采用户用计量仪表即水表、电表、燃气表、热表(四表)安装在用户室内, 抄表人员走家串户,手工抄表采集数据,然后结算的计量收费方式。为了有效解决入户抄表收费存在的诸多弊端, 我国从90年代初开始研制全电子式电能表,并且取得了一定的成果。目前已研制出多种远程抄表系统,常用的有用基于电力线载波的抄表系统,基于RS-485总线的抄表系统等。 基于电力线载波的抄表系统,减少了系统由于布线带来的成本,但是由于信号和强电在同一根线上传输,传输过程中不可避免地存在强电场的干扰,信号的可靠性受到影响,而且随着传输距离的增大,信号的衰减较快,影响了抄表数据的可靠性;基于RS-485的抄表系统是较为理想的一种远程抄表系
[工业控制]
浅谈数据线扼流圈改善电磁兼容问题使汽车更加安全
近年来,汽车内的电子设备比例在显著增长,随之也产生了更多的功能,用以提高汽车的安全性、可靠性以及便利性。与此相对应的是针对总线系统的日益增长的要求:确保在最多样化的控制单元之间实施可靠通信,特别是经由总线系统如控制器局域网(CAN)或FlexRay系统控制对安全性至关重要的应用,它们必须满足最高的电磁兼容性规格。数据线中的共模扼流圈( CMC )可加强由电磁兼容性问题所导致的故障的防护。 当代机动车辆控制功能的复杂性在于三点:更快的数据速率、确定时延性能以及故障容错功能。以成本考量为主的功能或多媒体功能由LIN(局域互连网)或 MOST (媒体导向系统传输)总线进行连接,而CAN或FlexRay总线系统则用于对安全至关重
[电源管理]
基于CAN总线的DNC远程诊断及监控系统
0 引言 DNC(DistributedNumericalControl)是把车间内的数控机床与上位控制计算机集成,实现加工设备集中控制与管理的一种方式。这种方式虽然充分利用了设备的潜力,提高了企业生产效率,但是对设备的维护提出了更高的要求。流水线上关键设备的长时间停机,将会给生产带来巨大的损失。为了使损失降到最低,应该在提高设备可靠性的同时,对加工设备进行状态监控,以便在设备出现故障征兆时,能及时进行故障处理,缩短故障诊断和维修时间。但是从我国大部分企业的人员配备模式来看,企业内部用于设备维护的专业技术人员相对较少,不可能在全国各地设立售后服务中心,当设备出现故障时,由于地域的原因专家无法及时到达故障现场,也就无法了解设备
[安防电子]