LCD显示技术 比较CRT与LCD两类显示屏时
液晶体显示屏(LCD)於1973年出现於计算器上,首个LCD是嵌入有七段字画,让数字得以被显示。下一代LCD则於1980年面世,属於点阵式(dot-matrix)显示,除显示数字外,还有字符和图形,比如是简单的单色电脑显示屏或者流行的“电子宠物” 他妈哥池。这些矩阵设计藉著启动阵中的行与列的像素作为控制,取代了每一像素需一条独立的控制线。至1980年代末,彩色滤光片成功地嵌入LCD设计里面。自始以後,历代产品皆集中於屏幕尺寸、显示器重量,能量效益、视角等提升上。
图1. 通过施加电压控制液晶体分子的垂直排列情况,光线可沿著分子穿过。 |
上下两板是彼此垂直偏光的。两板之间的电压调校液晶体於扭曲模式中,以配合每一板的偏光。来自背底光的光线穿过已调校的液晶体。反之,当液晶体没有被调校时,光线就被阻隔,调校的分量与施加电压成比例,并且担当为光度控制。
表1. 列出各种不同视像格式的像素阵列大小 |
LCD闪烁的原因
图2. LCD显示屏中闪烁的视觉例子。 |
在LCD显示屏上的闪烁有别於CRT,LCD闪烁乃本身呈现褪色,而并非是脉动光。如图2a及2b所示,图2a是LCD显示屏经己被调节至减少闪烁,而图2b是LCD有过强闪烁,这是因为LCD的刷新率高达300Hz所致。[page]
图3. 单一LCD像图之电路 |
这种布局方式虽发挥作用,但却减低屏幕寿命,假定Vcom电压在地。像素上的电压变化由0V至10V,假定平均为5V,这就有重大的DC电压在每一像素的两端,这DC电压造成电荷储存。在长期来讲,因著像素上的电极电镀
有离子杂质而令到像素恶化,这是导致影像残留的原因,常见於旧的TFT-LCD屏板上颜色变淡。
LCD屏幕的结构是对称的(图1),正压与负压任一个都可利用来调校液晶体,其中可以充份利用这方面的是将公共电压移到视频信号的中点(5V),现在视频信号上下摆动於公共电压(Vcom)上,於是在像素上制造出一个“净零效果”(net-zero effect)。这个发生在液晶体上的净零效果消除了老化和影像残留问题。这种技术要在清晰度上作出协调,因为视频信号行走5V至全亮度,代替10V。
图4. 交替帧中对於三种反转模式的LCD像素相位分布∶帧反转、线反转、点反转。 |
Vcom电压需准确放置在视频信号中点上才能避免闪烁。当要说明为何显示屏会闪烁,假定因为制造屏幕的关系。Vcom定在5.5V。倘若视频信号摆动於0V与10V之间,满度电压就会在每一图场有所差别,在一图场上满度电压是4.5V,而在另一图场的满度电压是5.5V,在满度电压中这个差异会转化为光度差,於是出现闪烁。[page]
图5. 使用光敏传感器EL7900测量屏幕的闪烁 |
为了让大家明白这些结果,首先需知道有两种LCD画面∶“白”画面与“黑”画面。白画面在缓和状态中(没有电压施加在液晶体上)给光通过液晶体,而黑画面则在缓和状态中阻隔全部光。当施加在液晶体上的电压增加时,液晶体旋转。此举阻隔更多光(正如在白画面的情况)或者让更多光通过(正如在黑画面的情况)。屏幕测试是白画面,所以液晶体上施加的电压越大,画面就越暗。倘若Vcom电压准确设定在中间(无闪烁),那麽,平均AC电压便是零,画面仍会是在其最亮点。倘若Vcom电压不在中间。那麽,结果AC电压就会更高,於是画面亮度会较暗。
图2b中的褪色是由於Vcom电压不平衡导致液晶体上错误电压所造成,并非是整体光强问题。
消除LCD闪烁的方法
图6. (a)(左图)使用机械式电位器调节VCOM。(b)(右图)使用数控电位器调节VCOM。 |
这是可接受的,纵使在大屏幕方面。准确较低及在组装期间很容易被破坏,需整个组件更换。超过19英寸的屏幕,底板再不能视作为单一的低阻抗节点,需在屏幕不同位置上作多重修正,也许要多至五个局部补偿网络,四个在角落,一个在中间,在这情况下∶数控电位器(Digitally Controlled Potentiometer, DCP)可以给制造商自动处理该项加工,对於大屏幕而又无法实行人手调校来讲是有必要的。图6a和图6b示出机械与数控电位器的解决方案。
图7. DCP软件可编程VCOM之应用电路 |
与流行的看法完全相反,LCD显示屏是存有闪烁的,不过简单的电位器调节是可以减低该影响,因为LCD闪烁出现在公共电压的偏移上,而并非在刷新信号上。
随著LCD越来越流行和屏幕尺寸不断增大,在底板上的单一点人手调节不再可行了,使用ISL45042 DCP和EL5111 Vcom缓冲器便可在底板的多点上进行Vcom偏移自动修正,效果更为明显。
上一篇:DAB接收机的样机设计
下一篇:四种新型高清显示技术优劣对比
推荐阅读最新更新时间:2024-05-02 22:27
- 宁德时代巧克力换电生态大会将举行,什么是“巧克力换电”?1.5分钟换电能实现吗?
- 新型生物材料与高端医疗器械广东研究院、远诺技术转移中心加入面向初创企业的 MathWorks
- S5PV210 Linux字符驱动之PWM蜂鸣器驱动
- 尼得科机床新增可实现高效加工的高速主轴产品线
- Gartner发布2025年影响基础设施和运营的重要趋势
- 智谱清言英特尔酷睿Ultra专享版发布,离线模型玩转AIPC
- Bourns推出全新高效能、超紧凑型气体放电管 (GDT) 浪涌保护解决方案
- S5PV210之UBOOT-2011.06启动过程解析
- 六个理由告诉您为什么应该将模拟无线麦克风更换为数字无线麦克风
- S5PV210启动过程分析