电力系统运行的稳定性是电力系统安全运行的基本要求,而对同步发电机励磁的控制是改善电力系统运行稳定性的一个经济和有效的手段。通过对发电机励磁施加适当的控制,可以改善电力系统在大小扰动下的稳定性[1-3]。以往励磁控制器设计通常是基于运行点的线性化方法所得,将电力系统近似作为一个线性化系统进行处理。但是电力系统的非线性决定了这种方法的局限性。基于微分几何理论的状态反馈精确线性化方法被引入发电机励磁控制系统设计[6],但是这种方法需要复杂的微分几何数学工具,作为改进,文献[7-9]提出基于直接反馈线性化理论的非线性励磁控制器。本文提出一种基于输入对状态反馈线性化的非线性励磁控制器,这种方法实用方便,容易理解。本文对这种新型的励磁控制器进行详细的仿真研究,仿真结果证明这种非线性励磁控制器对于提高电力系统在大小扰动下的稳定性有一定作用。
2 输入对状态反馈线性化理论简述
对于给定单输入仿射非线性系统:
系统(1)能够被输入对状态反馈线性化的条件是:系统具有相对度(relative degree)r=n,其中n为系统的阶数。若非线性系统(1)能够被输入对状态反馈线性化。则在一个邻域ΩRn中存在一个微分同胚T:Ω→Rn,在新的坐标变换下z=T(x)下,系统可以转化为:
同时可得到a(x),B(x)的表达式,如下(4)式所示。
式(5)是一线性化系统,所以其控制规律可以完全按照线性系统的方法来设计。
3 非线性励磁控制设计
所要研究的系统如图1所示,发电机采用三阶简化模型,保持原动机功率不变,并且忽略摩擦阻尼的影响情况下,系统可用下面一组微分方程表示:
其中:δ为发电机功角,Wb=2πf,W为发电机角频率,Pm为原动机功率,Pe为发电机电磁功率,e′q为暂态电势,Efd为励磁电压,Eq为空载电势。M为惯性时间常数,T′do为励磁绕组暂态时间常数。
系统方程可以写成:
由于该系统可以实现输入对状态反馈线性化,所以存在可逆变换z=T(x)=(T1(x) T2(x) T3(x))T将系统转换为(5)形式。由(3)可得:
其逆变换T-1(z)存在。根据(4)式,可求得a(x)、β(x)
[page]
系统(10)为一线性系统,可以按照线性最优控制[10]设计控制量,控制量表达式如下式(11)所示:
可以证明,用输入对状态反馈线性化方法推导出的控制规律和用基于微分几何理论的状态反馈精确线性化方法以及用直接反馈线性化(DFL)方法推导出的控制规律一致[6][8][9],但本文的方法更简单实用。
这样控制量的计算只需要测量δ, W,Pe。
4 仿真结果
针对图1所示系统,分别对系统发生(1)三相短路0.2s后切除故障;以及(2)切除一条线路运行3.5m后恢复双回线路运行两种扰动下的动态过程进行了仿真。仿真结果如图2,图3所示。
从图2,图3可以看出,本文提出的非线性励磁控制器在系统发生扰动时,总是表现出比常规的AVR+PSS更好的阻尼特性,因此采用非线性励磁控制器更能抑制系统在发生故障时的振荡,对于增强系统稳定性有一定促进作用。
另外,本文对图4所示五台机电力系统进行了仿真研究,假定在No.3发电机出口端发生三相短路时,在No.3机上装常规的AVR+PSS或者非线性励磁控制器,考察多机系统的动态响应情况,仿真结果如图5所示。
[page]
由图5可以看出,当发电机装上本文提出的非线性励磁控制器后,在系统发生故障时,比起常规的AVR+PSS,能够更快的平息振荡。
5 结论
本文提出一种基于输入对状态反馈线性化理论的非线性励磁控制器,所得的控制规律和用基于微分几何理论的精确线性化思想推导出的控制规律具有一致性,但是本文的方法更简单实用,利于工程应用。单机无穷大系统以及多机系统下的仿真结果证明,该非线性励磁控制器和常规AVR+PSS相比,能够更好抑制电力系统在大小扰动下振荡,对于增强系统稳定性有一定作用。
上一篇:提高可靠性的ESD保护考虑
下一篇:电机智能启动器的设计和实现
推荐阅读最新更新时间:2024-05-02 22:31