单相逆变器新型重复-模糊控制方案

发布者:泥匠手最新更新时间:2013-03-12 来源: 电子设计工程 关键字:单相逆变器  模糊控制  模态选择 手机看文章 扫描二维码
随时随地手机看文章
1 引言
    以逆变器为核心的不间断电源广泛用于航空、航天、金融及通信等领域。衡量逆变器输出电压波形质量的指标主要包括稳态精度、动态响应和总谐波畸变率。逆变器的各种控制方案均有其优势,但也存在不足。重复控制利用扰动的重复性逐基波周期地修正输出电压,能够获得很高的稳态精度,但由于重复控制的前向通道上串联了一个周期延迟环节,导致重复控制器需延迟一个基波周期才对系统产生调节作用,因此其动态特性较差。模糊控制无需被控对象的精确模型,特别适合逆变器等非线性系统,且其响应速度快、自适应性强,能有效消除系统外部扰动,但由于稳态特性较差,难以获得很高的控制精度。
    此处提出一种将重复控制与单输入模糊自整定比例控制相结合的双模控制方案,综合了两者的优点,很大程度地改善了系统的动、稳态性能。

2 逆变器数学模型
   
具有单相两电平硬开关、接有后级LC滤波器的逆变器,无论采用半桥还是全桥结构,调制方式为单极性还是双极性,均可抽象为图1所示电路模型。图中,ui为逆变桥输出电压;r为线路综合等效电阻;L,C为输出滤波器电感、电容;Z为负载。


    假设主电路元件均为理想器件,忽略开关损耗,逆变器动态特性主要由LC滤波器决定,且在空载情况下振荡倾向最为强烈,为保证系统在任何负载条件下都稳定,通常在空载状态下对系统进行设计。由图1可得空载逆变器传递函数为:
   
    实验时,取L=700μH,C=36 μF,r=0.1 Ω,则阻尼比ξ=0.011 3,谐振频率ωn=6 340 rad·s-1。则该逆变器在空载状态下传递函数为:
   
    取开关频率为10 kHz,利用Matlab中c2dm.m函数对上式进行离散化可得离散的传递函数为:
    P(s)=(0.191z+0.190 1)/(z2-1.6047z+0.985 8)       (3)

3 重复控制
3.1 基本原理
   
重复控制基于内模原理控制理论,成功的构造了任意周期信号的内模,通过对输入信号的逐周期累加,实现对指令的精确跟踪,即使输入信号衰减至零,内模仍能持续输出与上一周期相同的信号,故可有效抑制周期性干扰引起的波形畸变。离散的嵌入式重复控制系统如图2所示。当误差信号重复出现时,重复控制器对误差信号进行逐周期的积分调节,直至误差被消除,重复控制器输出停止变化,维持并周期性地输出上一周期的波形。

[page]

    由图2可得,d(z)到e(z)的传递函数为:

    式中:ω∈[0,π/t],T为采样周期。
3.2 重复控制器设计
   
按照重复控制器设计的一般步骤进行设计:
    (1)z-N前向通道上串联的z-N使控制信号延迟一个基波周期输出,即当前检测到的误差信号要到下一个周期才作为控制量的一部分对系统产生调节作用。值得注意的是,z-N也是实现zk所必须的。系统采样频率为10 kHz,输出电压频率为50 Hz,因此N=200。
    (2)Q(z)理想的重复控制系统中,Q(z)=1,但内模的N个处于单位圆上的极点使系统处于临界稳定状态。为增强系统稳定性,Q(z)一般取略小于1的正常数或低通滤波器,此处取Q(z)=0.95。
    (3)S(z) S(z)是根据被控对象特性而设计的,其作用是将被控对象中的低频段增益校正为1,提高系统抗干扰能力,一般由零相移陷波器和二阶低通滤波器串联组成,分别用于消除逆变器高谐振峰和提供高频衰减能力。此处设计零相移陷波器S1(z)=(z5+2+z-5)/4,二阶低通滤波器S2(z)=(0.1302z+0.094 4)/(z2-1.1582z+0.383)。
    (4)zk zk用于补偿S(z)和被控对象引入的相位滞后,使S(z)P(z)在中低频段接近零相移,k为超前步长,此处k=4。
    (5)Kr Kr用于改变重复控制器内模输出量的幅值,其值越小,系统稳定裕度越大,但误差收敛速度有所下降;反之,误差收敛速度越快,但系统稳定性更差。经实验反复调试。取Kr=0.8。将上述参数代入式(6)可知,重复控制系统是稳定的。

4 系统复合控制
   
重复控制虽能保证系统具有较高稳态精度,但重复控制对扰动的调节滞后一个基波周期,即从发现扰动到实施控制,需一个基波周期的时间间隔,当系统承受阶跃信号或突加突卸负载时,系统几乎处于开环状态,重复控制器不起任何作用,故其动态响应特性较差。为满足逆变器对动态性能和稳态精度的要求,提出将重复控制与模糊自整定比例控制相结合的控制方案,如图3所示。


    利用重复控制改善系统稳态性能,而对参数变化具有较强适应性的模糊自整定比例控制则用于改善系统动态特性。并在重复控制器前馈通路上增加前馈系数km。来消除嵌入式重复控制系统引起的输出电压在第一个基波周期的超调;重复控制器与模糊控制器为并联结构,二者采用分段控制方式。系统运行时,模态选择开关不断检测电压误差,在系统启动或遇到突加扰动时,误差绝对值大于设定阈值,模态选择开关切换到模糊控制,保证系统有较快动态响应速度;当误差绝对值小于设定阈值时,系统已进入稳态,模态选择开关切换到重复控制,保证系统有较高稳态精度。
    传统模糊控制器多以误差e和误差变化率ec作为输入,经模糊化后在一定模糊规则下进行模糊推理,再查询模糊矩阵表得到相应控制量。显然,模糊控制器输入量越多,模糊规则越细,实现起来就越复杂。文献提出了一种单输入模糊控制器(SIFLC)设计方法,可将二维输入模糊规则表简化为一维,且能达到与原控制器相同的控制效果。在文献基础上,采用图4所示的改进型单输入模糊控制器对比例因子kp进行在线自整定。


    图5示出改进的单输入模糊子集的隶属度函数。模糊输入变量S和输出变量U的论域划分为7个模糊子集:负大(NB)、负中(NM)、负小(NS)、零(Z)、正小(PS)、正中(PM)、正大(PB),论域范围为[-1,1],隶属函数为等腰三角形。改进型单输入模糊控制规则如表1所示。二维输入转换到单输入可通过S=e(i)+ec(j),i,j=1,2,…,7实现。

[page]



5 实验
   
用一台11 kW双极性SPWM全桥逆变电源样机对该新型重复-模糊控制方案进行实验验证。系统参数为:直流母线电压380 V,IGBT功率管选用150 A/1 200 V PM150RLA120型IPM模块,死区时间2μs,额定输出电压220 V,其他参数同上述设计。闭环控制中km=0.85,kp初值为100,模态选择开关阈值为1 V。采用TMS320F2407A型DSP实现全部控制算法,实验波形如图6所示。图6a,b为负载突变时输出电压uo‰和输出电流io波形。为模拟最恶劣的情况,将突变时间选在电压峰值处,可见,uo在负载突变时只有很小的波动,动态响应速度较快。图6c,d为系统带整流性负载时uo,io波形及频谱分析。因为重复控制能有效消除各次谐波带来的干扰,故uo有较好的正弦度,加入整流性负载时,波形并未发生较大畸变,THD=1.18%;空载时,THD=0.74%;满阻性负载时,THD=0.91%。因此,输出电压谐波含量小,电压稳态精度高。



6 结论
   
重复控制与模糊自整定比例控制相结合的单相逆变器双模控制方案吸收了重复控制与模糊控制的优点,克服了逆变器系统启动时的超调现象。该方案采用改进的单输入模糊控制器降低了输入维数和复杂性,并达到与二维输入模糊控制器相同的控制效果。实验表明该方案不仅能获得较低谐波畸变率,且具有较强的抗非周期性干扰能力,在系统动、稳态特性均得到很大改善。

关键字:单相逆变器  模糊控制  模态选择 引用地址:单相逆变器新型重复-模糊控制方案

上一篇:CCD对比CMOS传感器优劣之分浅析
下一篇:一种静态图像的采集传输系统

推荐阅读最新更新时间:2024-05-02 22:35

基于LabVIEW的直流电机模糊控制系统设计
  模糊控制技术是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制,最早出现于上个世纪60年代,在其后的几十年中迅速发展。目前模糊控制技术在控制领域的应用非常广泛。LabVIEW则是一种面向仪器测量控制的图形化的编程语言,配合数据采集卡或其他外部设备可以非常方便的构成以计算机为核心的测量控制系统。   直流电机的传统PID控制方法虽然可以很好的完成对电机转速的有效控制,但存在动态性能相对差,恢复时间长,超调量大以及参数整定困难等缺点。而于上个世纪60年代出现的模糊控制技术在某种程度上可以克服上述缺点。本设计利LabVIEW软件结合模糊控制算法,在NI公司的ELVIS实验平台上实现有刷直流电机转速的模糊控制系统。通
[测试测量]
基于LabVIEW的直流电机<font color='red'>模糊控制</font>系统设计
自校正模糊控制交流电机转速调整器的研究与设计
摘要:分析了由MCU和双向晶闸管开关来控制通用电动机转速的原理,提出了一种提高电动机效率的设计方案,给出了该实现方案的硬件电路和软件程序框图,同时给出了实验仿真的结果。 关键词:微控制器;晶闸管开关;电路板 1 引言 在日常生产与生活中,大量电动机都以规定的速度和功率去拖动各种机械。而在军事上,很多应用往往要求旋转天线在各种条件下都要保持匀速转动,这就要求在不同的情况下,电动机能相应调整工作速度,以保持恒定的速度。要实现这一功能, 最常用的方法是对电动机的转速进行调节。改变直流电动机的电枢或交流电动机的定子电压,都可以在一定的范围里改变转速;也可用双向晶闸管交流开关或直接选用模拟控制的通用电动机驱动器来取代笨重的电动机
[应用]
基于PLC实现道路十字路口交通灯模糊控制系统
1  引言                       传统的十字路口交通控制灯,通常是事先经过交通流量的调查,运用统计的方法将两个方向红绿灯的延时预先设置好,然后实际的变化却是未知的,所以常常出现绿灯方向几乎没有什么车辆,而红灯方向却排着长队等候通过的调度失控。本文据此提出模糊智能交通路口指挥调度控制系统。              2  交通十字路口传感器的设置                       在十字路口的四个方向(e、s、w、n)的近端j(斑马线附近)和远端y(距斑马线约100米处)各设置一个传感器,分别统计通过该处的车辆数。如图1所示。                                
[电源管理]
基于PLC实现道路十字路口交通灯<font color='red'>模糊控制</font>系统
中央空调房间温度模糊控制器的设计
    摘要: 提出了一套中央空调房间温度控制器的设计方案。针对对象的大惯性、大迟延特点,采用串级控制方式;针对对象的非线性和不确定性,主控制器采用模糊控制加积分的控制方式,取得了较好的控制效果。给出了控制器的硬件设计方案,并对使用单片机控制直流电机的原理进行了说明。     关键词: 中央空调 温度 模糊控制 单片机 在现代化的楼房大厦中,大多数采用了中央空调统一供热、制冷的方法。在每一个空间内都安装了热交换器和循环风机,通过设定风机的转速来改变换热量的大小,调节房间的温度。一般的控制器可以设定“高/中/低/关”四种模式。但这种控制方法的缺点是房间温度需要手动调节,各种环境因素的变化常常会使人们感到不适。
[应用]
环境实验室温、湿度模糊控制系统设计
传统的温、湿度闭环控制通常采用开关控制或PID控制,前者实现简单但精度差,后者精度高,但需建立数学模型,参数整定要求较高,而在温湿度非线性复杂变化的环境下,不易精确建模。模糊控制理论是能够模拟人脑智能,随环境变化的自适应控制技术,适合于非线性系统和难以用数学模型精确描述的复杂系统。进一步可以采用神经网络与模糊推理结合的控制新模式。 1 环境实验室温湿度监控系统结构 环境实验室温、湿度监测控制机构见图1。温、湿度传感器测得的信号经过调理,输入到模糊控制算法模块,产生决策信号控制驱动件(加热器、制冷器、加湿器、除湿器),保持环境实验室温、湿度恒定在设定值。 2 控制系统模糊控制机理 典型的模糊逻辑控制由模糊化、
[工业控制]
基于模糊控制的直流无刷电机调速系统*
摘要: 本文介绍了一种基于参数自调整的模糊控制单片机直流无刷电动机调速系统。系统采用高性能的八位嵌入式单片微处理器PIC16C63,使硬件结构简洁、可靠;采用参数自调整模糊控制器,使系统具有较高的控制精度和良好的鲁棒性。     关键词: 参数自调整模糊控制  嵌入式单片微处理器  直流无刷电机调速系统引言     传统PID控制的电机调速系统技术成熟,结构简单,较稳定可靠,应用较为广泛,但也存在一些缺点,例如无法有效地克服传动对象和负载参数的大范围变化以及非线性因素对系统造成的影响,因而不能满足高性能和高精度的要求。随着模糊控制技术的成熟,应用越来越广泛,人们也开始将它应用于电机调速中。使用
[应用]
基于DSP和模糊控制的寻线行走机器人设计与实现
  在最近的机器人比赛和电子设计竞赛中,较多参赛题目要求机器人沿场地内白色或黑色指引线行进。一些研究人员提出了基于寻线的机器人设计策略,主要是关注指引线的检测,但对于机器人的整体设计未做说明。本文在总结此类赛事的基础上,提出了一种将DSP(Digital Signal Processor)和CPLD(Complex Programmable Logic Device)作为核心处理器,采用模糊控制策略处理来自检测指引线传感器信号的机器人行走机构的通用性设计方法。    1 车体机械设计   由于机器人比赛对参赛机器人有严格的尺寸限制,需要在有限的空间内合理安排各个机构。本文给出车体最小尺寸时驱动轮、光电传感器以及控制芯片之间的相
[工业控制]
基于DSP和<font color='red'>模糊控制</font>的寻线行走机器人设计与实现
单相正弦脉宽调制逆变器的设计
  引言   当铁路、冶金等行业的一些大功率非线性用电设备运行时,将给电网注入大量的谐波,导致电网电压波形畸变。根据我们的实验观察,在发生严重畸变时,电压会出现正负半波不对称,频率也会发生变化。这样的供电电压波形,即使是一般的电力用户,也难以接受,更无法用其作为检修、测试的电源。同时,在这种情况下,一般的稳压电源也难以达到满意的稳压效果。为此,我们设计了该逆变电源。其控制电路采用了2片集成脉宽调制电路芯片SG3524,一片用来产生PWM波,另一片与正弦函数发生芯片ICL8038做适当的连接来产生SPWM波。集成芯片比分立元器件控制电路具有更简单、更可靠的特点和易于调试的优点。   1 系统结构及框图   图1示出了系
[电源管理]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved