在数据通信中,复用技术的使用极大地提高了信道的传输效率,取得了广泛地应用。多路复用技术就是在发送端将多路信号进行组合(如广电前端使用的混合器),然后在一条专用的物理信道上实现传输,接收端再将复合信号分离出来。多路复用技术主要分为两大类:频分多路复用(简称频分复用)和时分多路复用(简称时分复用),波分复用和统计复用本质上也属于这两种复用技术。另外还有一些其他的复用技术,如码分复用、极化波复用和空分复用等。
1.频分复用
频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。
1.1传统的频分复用
传统的频分复用典型的应用莫过于广电HFC网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,因为对于数字电视信号而言,尽管在每一个频道(8 MHz)以内是时分复用传输的,但各个频道之间仍然是以频分复用的方式传输的。
1.2正交频分复用
OFDM(Orthogonal Frequency Division Multiplexing)实际是一种多载波数字调制技术。OFDM全部载波频率有相等的频率间隔,它们是一个基本振荡频率的整数倍,正交指各个载波的信号频谱是正交的。
OFDM系统比FDM系统要求的带宽要小得多。由于OFDM使用无干扰正交载波技术,单个载波间无需保护频带,这样使得可用频谱的使用效率更高。另外,OFDM技术可动态分配在子信道中的数据,为获得最大的数据吞吐量,多载波调制器可以智能地分配更多的数据到噪声小的子信道上。目前OFDM技术已被广泛应用于广播式的音频和视频领域以及民用通信系统中,主要的应用包括:非对称的数字用户环线(ADSL)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)和第4代(4G)移动通信系统等。
2.时分复用
时分复用(TDM,Time Division Multiplexing)就是将提供给整个信道传输信息的时间划分成若干时间片(简称时隙),并将这些时隙分配给每一个信号源使用,每一路信号在自己的时隙内独占信道进行数据传输。时分复用技术的特点是时隙事先规划分配好且固定不变,所以有时也叫同步时分复用。其优点是时隙分配固定,便于调节控制,适于数字信息的传输;缺点是当某信号源没有数据传输时,它所对应的信道会出现空闲,而其他繁忙的信道无法占用这个空闲的信道,因此会降低线路的利用率。时分复用技术与频分复用技术一样,有着非常广泛的应用,电话就是其中最经典的例子,此外时分复用技术在广电也同样取得了广泛地应用,如SDH,ATM,IP和HFC网络中CM与CMTS的通信都是利用了时分复用的技术。
3.波分复用
光通信是由光来运载信号进行传输的方式。在光通信领域,人们习惯按波长而不是按频率来命名。因此,所谓的波分复用(WDM,Wavelength Division Multiplexing)其本质上也是频分复用而已。WDM是在1根光纤上承载多个波长(信道)系统,将1根光纤转换为多条“虚拟”纤,当然每条虚拟纤独立工作在不同波长上,这样极大地提高了光纤的传输容量。由于WDM系统技术的经济性与有效性,使之成为当前光纤通信网络扩容的主要手段。波分复用技术作为一种系统概念,通常有3种复用方式,即1 310 nm和1 550 nm波长的波分复用、粗波分复用(CWDM,Coarse Wavelength Division Multiplexing)和密集波分复用(DWDM,Dense Wavelength Division Multiplexing)。
(1)1 310 nm和1 550 nm波长的波分复用
这种复用技术在20世纪70年代初时仅用两个波长:1 310 nm窗口一个波长,1 550 nm窗口一个波长,利用WDM技术实现单纤双窗口传输,这是最初的波分复用的使用情况。
(2)粗波分复用
继在骨干网及长途网络中应用后,波分复用技术也开始在城域网中得到使用,主要指的是粗波分复用技术。CWDM使用1 200~1 700 nm的宽窗口,目前主要应用波长在1 550 nm的系统中,当然1 310 nm波长的波分复用器也在研制之中。粗波分复用(大波长间隔)器相邻信道的间距一般≥20 nm,它的波长数目一般为4波或8波,最多16波。当复用的信道数为16或者更少时,由于CWDM系统采用的DFB激光器不需要冷却,在成本、功耗要求和设备尺寸方面,CWDM系统比DWDM系统更有优势,CWDM越来越广泛地被业界所接受。CWDM无需选择成本昂贵的密集波分解复用器和“光放”EDFA,只需采用便宜的多通道激光收发器作为中继,因而成本大大下降。如今,不少厂家已经能够提供具有2~8个波长的商用CWDM系统,它适合在地理范围不是特别大、数据业务发展不是非常快的城市使用。
(3)密集波分复用
密集波分复用技术(DWDM)可以承载8~160个波长,而且随着DWDM技术的不断发展,其分波波数的上限值仍在不断地增长,间隔一般≤1.6 nm,主要应用于长距离传输系统。在所有的DWDM系统中都需要色散补偿技术(克服多波长系统中的非线性失真——四波混频现象)。在16波DWDM系统中,一般采用常规色散补偿光纤来进行补偿,而在40波DWDM系统中,必须采用色散斜率补偿光纤补偿。DWDM能够在同一根光纤中把不同的波长同时进行组合和传输,为了保证有效传输,一根光纤转换为多根虚拟光纤。目前,采用DWDM技术,单根光纤可以传输的数据流量高达400 Gbit/s,随着厂商在每根光纤中加入更多信道,每秒太位的传输速度指日可待。
4.码分复用
码分复用(CDM,Code Division Multiplexing)是靠不同的编码来区分各路原始信号的一种复用方式,主要和各种多址技术结合产生了各种接入技术,包括无线和有线接入。例如在多址蜂窝系统中是以信道来区分通信对象的,一个信道只容纳1个用户进行通话,许多同时通话的用户,互相以信道来区分,这就是多址。移动通信系统是一个多信道同时工作的系统,具有广播和大面积覆盖的特点。在移动通信环境的电波覆盖区内,建立用户之间的无线信道连接,是无线多址接入方式,属于多址接入技术。联通CDMA(Code Division Multiple Access)就是码分复用的一种方式,称为码分多址,此外还有频分多址(FDMA)、时分多址(TDMA)和同步码分多址(SCDMA)。
(1)FDMA
FDMA频分多址采用调频的多址技术,业务信道在不同的频段分配给不同的用户。FDMA适合大量连续非突发性数据的接入,单纯采用FDMA作为多址接入方式已经很少见。目前中国联通、中国移动所使用的GSM移动电话网就是采用FDMA和TDMA两种方式的结合。 [page]
(2)TDMA时分多址
TDMA时分多址采用了时分的多址技术,将业务信道在不同的时间段分配给不同的用户。TDMA的优点是频谱利用率高,适合支持多个突发性或低速率数据用户的接入。除中国联通、中国移动所使用的GSM移动电话网采用FDMA和TDMA两种方式的结合外,广电HFC网中的CM与CMTS的通信中也采用了时分多址的接入方式(基于DOCSIS1.0或1.1和Eruo DOCSIS1.0或1.1)。
(3)CDMA码分多址
CDMA是采用数字技术的分支——扩频通信技术发展起来的一种崭新而成熟的无线通信技术,它是在FDM和TDM的基础上发展起来的。FDM的特点是信道不独占,而时间资源共享,每一子信道使用的频带互不重叠;TDM的特点是独占时隙,而信道资源共享,每一个子信道使用的时隙不重叠;CDMA的特点是所有子信道在同一时间可以使用整个信道进行数据传输,它在信道与时间资源上均为共享,因此,信道的效率高,系统的容量大。CDMA的技术原理是基于扩频技术,即将需传送的具有一定信号带宽的信息数据用一个带宽远大于信号带宽的高速伪随机码(PN)进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去;接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。CDMA码分多址技术完全适合现代移动通信网所要求的大容量、高质量、综合业务、软切换等,正受到越来越多的运营商和用户的青睐。
(4)同步码分多址技术
同步码分多址(SCDMA,Synchrnous Code Division Multiplexing Access)指伪随机码之间是同步正交的,既可以无线接入也可以有线接入,应用较广泛。广电HFC网中的CM与CMTS的通信中就用到该项技术,例如美国泰立洋公司(Terayon)和北京凯视通电缆电视宽带接入,结合ATDM(高级时分多址)和SCDMA上行信道通信(基于DOCSIS2.0或Eruo DOCSIS2.0)。
中国第3代移动通信系统也采用同步码分多址技术,它意味着代表所有用户的伪随机码在到达基站时是同步的,由于伪随机码之间的同步正交性,可以有效地消除码间干扰,系统容量方面将得到极大的改善,它的系统容量是其他第3代移动通信标准的4~5倍。
5.空分复用
空分复用(SDM,Space Division Multiplexing)即多对电线或光纤共用1条缆的复用方式。比如5类线就是4对双绞线共用1条缆,还有市话电缆(几十对)也是如此。能够实现空分复用的前提条件是光纤或电线的直径很小,可以将多条光纤或多对电线做在一条缆内,既节省外护套的材料又便于使用。
6.统计复用
统计复用(SDM,Statistical Division Multiplexing)有时也称为标记复用、统计时分多路复用或智能时分多路复用,实际上就是所谓的带宽动态分配。统计复用从本质上讲是异步时分复用,它能动态地将时隙按需分配,而不采用时分复用使用的固定时隙分配的形式,根据信号源是否需要发送数据信号和信号本身对带宽的需求情况来分配时隙,主要应用场合有数字电视节目复用器和分组交换网等,下面就以这两种主要应用分别叙述。
6.1数字电视节目复用器
数字电视节目复用器主要完成对MPEG-2传输流(TS)的再复用功能,形成多节目传送流(MPTS),用于数字电视节目的传输任务。所谓统计复用是指被复用的各个节目传送的码率不是恒定的,各个节目之间实行按图像复杂程度分配码率的原则。因为每个频道(标准或增补)能传多个节目,各个节目在同一时刻图像复杂程度不一样(一样的概率很小),所以我们可以在同一频道内各个节目之间按图像复杂程度分配码率,实现统计复用。
实现统计复用的关键因素:一是如何对图像序列随时进行复杂程度评估,有主观评估和客观评估两种方法;二是如何适时地进行视频业务的带宽动态分配。使用统计复用技术可以提高压缩效率,改进图像质量,便于在1个频道中传输多套节目,节约传输成本。
6.2分组交换网
分组交换网是继电路交换网和报文交换网之后的一种新型交换网络,它主要用于数据通信,如X.25,帧中继,DPT,SDH,GE和ATM都是分组交换的例子。分组交换是一种存储转发的交换方式,它将用户的报文划分成一定长度的分组(可以定长和不定长),以分组为存储转发。因此,它比电路交换的利用率高,比报文交换的时延小,具有实时通信的能力。分组交换利用统计时分复用原理,将1条数据链路复用成多个逻辑信道,最终构成1条主叫、被叫用户之间的信息传送通路,称之为虚电路(即VC,两个用户终端设备在开始互相发送和接收数据之前需要通过网络建立逻辑上的连接),实现数据的分组传送。分组交换网中有的支持统计复用,有的不支持统计复用,例如SDH就不支持统计复用,其带宽是固定不变的,支持统计复用技术的主要有帧中继、ATM和IP,下面作分别介绍。
(1)帧中继
帧中继是在X.25分组交换技术基础上发展起来的一种快速分组交换传输技术,用户信息以帧(可变长)为单位进行传输,并对用户信息流进行统计复用。
(2)ATM
ATM支持面向连接(非物理的逻辑连接)的业务,具有很大的灵活性,可按照多媒体业务实际需要动态分配通信资源,对于特定业务,传送速率随信息到达的速率而变化,因此,ATM具有统计复用的能力,能够适应任何类型的业务。
(3)DPT
DPT(Dynamic Packet Transport)是Sisco公司独创的新一代优化动态分组的传输技术,吸收了SDH的优点而克服其缺点,将IP路由技术对宽带的高效利用以及丰富的业务融合能力,和光纤环路的高带宽及可靠的自愈功能紧密结合,由于所有节点都具有公平机制且支持带宽统计复用,可成倍提高网络可用带宽。
(4)吉位以太网
GE(Gigabit Ethernet)是以太网技术的延伸,是第3代以太网,它主要处理数据业务,是目前广电宽带城域骨干网采用的主流技术。以太网交换机端口(RJ45)所带的用户信道使用率通常是不相同的,经常会出现有的信道很忙,有的信道处于空闲状态,即便是以太网交换机所有的端口都处于通信状态下,还会涉及到带宽的不同需求问题,而数据交换的特性在于突发性,只有通过统计复用,即带宽动态分配才能降低忙闲不一的现象,从而最大限度地利用网络带宽。
7.字节间插复用
在SDH(Synchronous Digital Hierarchy)中复用是指将低阶通道层信号适配进高阶通道,或将多个高阶通道层信号适配进复用段的过程。我们知道SDH复用有标准化的复用结构,但每个国家或地区仅有一种复用路线图,由硬件和软件结合来实现,灵活方便。而字节间插复用(BIDM,Byte Intertexture Division Multiplexing)是SDH中低级别的同步传送模块(STM, Synchronous Transport Module)向高级别同步传送模块复用的一种方式,高级别的STM是低级别STM的4倍。如图1所示的4个STM-1字节间插复用进STM-4的示意图,当然4个STM-4字节间插复用进STM-16也一样,其余等级的同步传送模块以此类推。这里的字节间插是指有规律地分别从4个STM-1中抽出1个字节放进STM-4中。进行字节间插复用,一是体现了SDH同步复用的设计思想;二是由AU-PTR(管理单元指针)的值,再通过字节间插的规律性,就可以定位低速信号在高速信号中的位置,使低速信号可以方便地分出或插入高速信号,这也是SDH与PDH相比较的优势之一,由于PDH低速信号在高速信号中位置的无规律性,从而高速信号插/分低速信号要一级一级进行复用/解复用,因为复用/解复用会增加信号的损伤,不利于大容量传输。
8.极化波复用
极化波复用(Polarization Wavelength Division Multiplexing)是卫星系统中采用的复用技术,即一个馈源能同时接收两种极化方式的波束,如垂直极化和水平极化,左旋圆极化和右旋圆极化。卫星系统中通常采用两种办法来实现频率复用:一种是同一频带采用不同极化,如垂直极化和水平极化,左旋圆极化和右旋圆极化等;另一种是不同波束内重复使用同一频带,此办法广泛使用于多波束系统中。
关键字:信道 传输效率 复用技术
引用地址:提高信道传输效率 漫谈各种复用技术
1.频分复用
频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。
1.1传统的频分复用
传统的频分复用典型的应用莫过于广电HFC网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,因为对于数字电视信号而言,尽管在每一个频道(8 MHz)以内是时分复用传输的,但各个频道之间仍然是以频分复用的方式传输的。
1.2正交频分复用
OFDM(Orthogonal Frequency Division Multiplexing)实际是一种多载波数字调制技术。OFDM全部载波频率有相等的频率间隔,它们是一个基本振荡频率的整数倍,正交指各个载波的信号频谱是正交的。
OFDM系统比FDM系统要求的带宽要小得多。由于OFDM使用无干扰正交载波技术,单个载波间无需保护频带,这样使得可用频谱的使用效率更高。另外,OFDM技术可动态分配在子信道中的数据,为获得最大的数据吞吐量,多载波调制器可以智能地分配更多的数据到噪声小的子信道上。目前OFDM技术已被广泛应用于广播式的音频和视频领域以及民用通信系统中,主要的应用包括:非对称的数字用户环线(ADSL)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)和第4代(4G)移动通信系统等。
2.时分复用
时分复用(TDM,Time Division Multiplexing)就是将提供给整个信道传输信息的时间划分成若干时间片(简称时隙),并将这些时隙分配给每一个信号源使用,每一路信号在自己的时隙内独占信道进行数据传输。时分复用技术的特点是时隙事先规划分配好且固定不变,所以有时也叫同步时分复用。其优点是时隙分配固定,便于调节控制,适于数字信息的传输;缺点是当某信号源没有数据传输时,它所对应的信道会出现空闲,而其他繁忙的信道无法占用这个空闲的信道,因此会降低线路的利用率。时分复用技术与频分复用技术一样,有着非常广泛的应用,电话就是其中最经典的例子,此外时分复用技术在广电也同样取得了广泛地应用,如SDH,ATM,IP和HFC网络中CM与CMTS的通信都是利用了时分复用的技术。
3.波分复用
光通信是由光来运载信号进行传输的方式。在光通信领域,人们习惯按波长而不是按频率来命名。因此,所谓的波分复用(WDM,Wavelength Division Multiplexing)其本质上也是频分复用而已。WDM是在1根光纤上承载多个波长(信道)系统,将1根光纤转换为多条“虚拟”纤,当然每条虚拟纤独立工作在不同波长上,这样极大地提高了光纤的传输容量。由于WDM系统技术的经济性与有效性,使之成为当前光纤通信网络扩容的主要手段。波分复用技术作为一种系统概念,通常有3种复用方式,即1 310 nm和1 550 nm波长的波分复用、粗波分复用(CWDM,Coarse Wavelength Division Multiplexing)和密集波分复用(DWDM,Dense Wavelength Division Multiplexing)。
(1)1 310 nm和1 550 nm波长的波分复用
这种复用技术在20世纪70年代初时仅用两个波长:1 310 nm窗口一个波长,1 550 nm窗口一个波长,利用WDM技术实现单纤双窗口传输,这是最初的波分复用的使用情况。
(2)粗波分复用
继在骨干网及长途网络中应用后,波分复用技术也开始在城域网中得到使用,主要指的是粗波分复用技术。CWDM使用1 200~1 700 nm的宽窗口,目前主要应用波长在1 550 nm的系统中,当然1 310 nm波长的波分复用器也在研制之中。粗波分复用(大波长间隔)器相邻信道的间距一般≥20 nm,它的波长数目一般为4波或8波,最多16波。当复用的信道数为16或者更少时,由于CWDM系统采用的DFB激光器不需要冷却,在成本、功耗要求和设备尺寸方面,CWDM系统比DWDM系统更有优势,CWDM越来越广泛地被业界所接受。CWDM无需选择成本昂贵的密集波分解复用器和“光放”EDFA,只需采用便宜的多通道激光收发器作为中继,因而成本大大下降。如今,不少厂家已经能够提供具有2~8个波长的商用CWDM系统,它适合在地理范围不是特别大、数据业务发展不是非常快的城市使用。
(3)密集波分复用
密集波分复用技术(DWDM)可以承载8~160个波长,而且随着DWDM技术的不断发展,其分波波数的上限值仍在不断地增长,间隔一般≤1.6 nm,主要应用于长距离传输系统。在所有的DWDM系统中都需要色散补偿技术(克服多波长系统中的非线性失真——四波混频现象)。在16波DWDM系统中,一般采用常规色散补偿光纤来进行补偿,而在40波DWDM系统中,必须采用色散斜率补偿光纤补偿。DWDM能够在同一根光纤中把不同的波长同时进行组合和传输,为了保证有效传输,一根光纤转换为多根虚拟光纤。目前,采用DWDM技术,单根光纤可以传输的数据流量高达400 Gbit/s,随着厂商在每根光纤中加入更多信道,每秒太位的传输速度指日可待。
4.码分复用
码分复用(CDM,Code Division Multiplexing)是靠不同的编码来区分各路原始信号的一种复用方式,主要和各种多址技术结合产生了各种接入技术,包括无线和有线接入。例如在多址蜂窝系统中是以信道来区分通信对象的,一个信道只容纳1个用户进行通话,许多同时通话的用户,互相以信道来区分,这就是多址。移动通信系统是一个多信道同时工作的系统,具有广播和大面积覆盖的特点。在移动通信环境的电波覆盖区内,建立用户之间的无线信道连接,是无线多址接入方式,属于多址接入技术。联通CDMA(Code Division Multiple Access)就是码分复用的一种方式,称为码分多址,此外还有频分多址(FDMA)、时分多址(TDMA)和同步码分多址(SCDMA)。
(1)FDMA
FDMA频分多址采用调频的多址技术,业务信道在不同的频段分配给不同的用户。FDMA适合大量连续非突发性数据的接入,单纯采用FDMA作为多址接入方式已经很少见。目前中国联通、中国移动所使用的GSM移动电话网就是采用FDMA和TDMA两种方式的结合。 [page]
(2)TDMA时分多址
TDMA时分多址采用了时分的多址技术,将业务信道在不同的时间段分配给不同的用户。TDMA的优点是频谱利用率高,适合支持多个突发性或低速率数据用户的接入。除中国联通、中国移动所使用的GSM移动电话网采用FDMA和TDMA两种方式的结合外,广电HFC网中的CM与CMTS的通信中也采用了时分多址的接入方式(基于DOCSIS1.0或1.1和Eruo DOCSIS1.0或1.1)。
(3)CDMA码分多址
CDMA是采用数字技术的分支——扩频通信技术发展起来的一种崭新而成熟的无线通信技术,它是在FDM和TDM的基础上发展起来的。FDM的特点是信道不独占,而时间资源共享,每一子信道使用的频带互不重叠;TDM的特点是独占时隙,而信道资源共享,每一个子信道使用的时隙不重叠;CDMA的特点是所有子信道在同一时间可以使用整个信道进行数据传输,它在信道与时间资源上均为共享,因此,信道的效率高,系统的容量大。CDMA的技术原理是基于扩频技术,即将需传送的具有一定信号带宽的信息数据用一个带宽远大于信号带宽的高速伪随机码(PN)进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去;接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。CDMA码分多址技术完全适合现代移动通信网所要求的大容量、高质量、综合业务、软切换等,正受到越来越多的运营商和用户的青睐。
(4)同步码分多址技术
同步码分多址(SCDMA,Synchrnous Code Division Multiplexing Access)指伪随机码之间是同步正交的,既可以无线接入也可以有线接入,应用较广泛。广电HFC网中的CM与CMTS的通信中就用到该项技术,例如美国泰立洋公司(Terayon)和北京凯视通电缆电视宽带接入,结合ATDM(高级时分多址)和SCDMA上行信道通信(基于DOCSIS2.0或Eruo DOCSIS2.0)。
中国第3代移动通信系统也采用同步码分多址技术,它意味着代表所有用户的伪随机码在到达基站时是同步的,由于伪随机码之间的同步正交性,可以有效地消除码间干扰,系统容量方面将得到极大的改善,它的系统容量是其他第3代移动通信标准的4~5倍。
5.空分复用
空分复用(SDM,Space Division Multiplexing)即多对电线或光纤共用1条缆的复用方式。比如5类线就是4对双绞线共用1条缆,还有市话电缆(几十对)也是如此。能够实现空分复用的前提条件是光纤或电线的直径很小,可以将多条光纤或多对电线做在一条缆内,既节省外护套的材料又便于使用。
6.统计复用
统计复用(SDM,Statistical Division Multiplexing)有时也称为标记复用、统计时分多路复用或智能时分多路复用,实际上就是所谓的带宽动态分配。统计复用从本质上讲是异步时分复用,它能动态地将时隙按需分配,而不采用时分复用使用的固定时隙分配的形式,根据信号源是否需要发送数据信号和信号本身对带宽的需求情况来分配时隙,主要应用场合有数字电视节目复用器和分组交换网等,下面就以这两种主要应用分别叙述。
6.1数字电视节目复用器
数字电视节目复用器主要完成对MPEG-2传输流(TS)的再复用功能,形成多节目传送流(MPTS),用于数字电视节目的传输任务。所谓统计复用是指被复用的各个节目传送的码率不是恒定的,各个节目之间实行按图像复杂程度分配码率的原则。因为每个频道(标准或增补)能传多个节目,各个节目在同一时刻图像复杂程度不一样(一样的概率很小),所以我们可以在同一频道内各个节目之间按图像复杂程度分配码率,实现统计复用。
实现统计复用的关键因素:一是如何对图像序列随时进行复杂程度评估,有主观评估和客观评估两种方法;二是如何适时地进行视频业务的带宽动态分配。使用统计复用技术可以提高压缩效率,改进图像质量,便于在1个频道中传输多套节目,节约传输成本。
6.2分组交换网
分组交换网是继电路交换网和报文交换网之后的一种新型交换网络,它主要用于数据通信,如X.25,帧中继,DPT,SDH,GE和ATM都是分组交换的例子。分组交换是一种存储转发的交换方式,它将用户的报文划分成一定长度的分组(可以定长和不定长),以分组为存储转发。因此,它比电路交换的利用率高,比报文交换的时延小,具有实时通信的能力。分组交换利用统计时分复用原理,将1条数据链路复用成多个逻辑信道,最终构成1条主叫、被叫用户之间的信息传送通路,称之为虚电路(即VC,两个用户终端设备在开始互相发送和接收数据之前需要通过网络建立逻辑上的连接),实现数据的分组传送。分组交换网中有的支持统计复用,有的不支持统计复用,例如SDH就不支持统计复用,其带宽是固定不变的,支持统计复用技术的主要有帧中继、ATM和IP,下面作分别介绍。
(1)帧中继
帧中继是在X.25分组交换技术基础上发展起来的一种快速分组交换传输技术,用户信息以帧(可变长)为单位进行传输,并对用户信息流进行统计复用。
(2)ATM
ATM支持面向连接(非物理的逻辑连接)的业务,具有很大的灵活性,可按照多媒体业务实际需要动态分配通信资源,对于特定业务,传送速率随信息到达的速率而变化,因此,ATM具有统计复用的能力,能够适应任何类型的业务。
(3)DPT
DPT(Dynamic Packet Transport)是Sisco公司独创的新一代优化动态分组的传输技术,吸收了SDH的优点而克服其缺点,将IP路由技术对宽带的高效利用以及丰富的业务融合能力,和光纤环路的高带宽及可靠的自愈功能紧密结合,由于所有节点都具有公平机制且支持带宽统计复用,可成倍提高网络可用带宽。
(4)吉位以太网
GE(Gigabit Ethernet)是以太网技术的延伸,是第3代以太网,它主要处理数据业务,是目前广电宽带城域骨干网采用的主流技术。以太网交换机端口(RJ45)所带的用户信道使用率通常是不相同的,经常会出现有的信道很忙,有的信道处于空闲状态,即便是以太网交换机所有的端口都处于通信状态下,还会涉及到带宽的不同需求问题,而数据交换的特性在于突发性,只有通过统计复用,即带宽动态分配才能降低忙闲不一的现象,从而最大限度地利用网络带宽。
7.字节间插复用
在SDH(Synchronous Digital Hierarchy)中复用是指将低阶通道层信号适配进高阶通道,或将多个高阶通道层信号适配进复用段的过程。我们知道SDH复用有标准化的复用结构,但每个国家或地区仅有一种复用路线图,由硬件和软件结合来实现,灵活方便。而字节间插复用(BIDM,Byte Intertexture Division Multiplexing)是SDH中低级别的同步传送模块(STM, Synchronous Transport Module)向高级别同步传送模块复用的一种方式,高级别的STM是低级别STM的4倍。如图1所示的4个STM-1字节间插复用进STM-4的示意图,当然4个STM-4字节间插复用进STM-16也一样,其余等级的同步传送模块以此类推。这里的字节间插是指有规律地分别从4个STM-1中抽出1个字节放进STM-4中。进行字节间插复用,一是体现了SDH同步复用的设计思想;二是由AU-PTR(管理单元指针)的值,再通过字节间插的规律性,就可以定位低速信号在高速信号中的位置,使低速信号可以方便地分出或插入高速信号,这也是SDH与PDH相比较的优势之一,由于PDH低速信号在高速信号中位置的无规律性,从而高速信号插/分低速信号要一级一级进行复用/解复用,因为复用/解复用会增加信号的损伤,不利于大容量传输。
8.极化波复用
极化波复用(Polarization Wavelength Division Multiplexing)是卫星系统中采用的复用技术,即一个馈源能同时接收两种极化方式的波束,如垂直极化和水平极化,左旋圆极化和右旋圆极化。卫星系统中通常采用两种办法来实现频率复用:一种是同一频带采用不同极化,如垂直极化和水平极化,左旋圆极化和右旋圆极化等;另一种是不同波束内重复使用同一频带,此办法广泛使用于多波束系统中。
上一篇:基于T-DMB的手机电视软硬件设计
下一篇:视频监控系统正从犯罪记录器转变为犯罪阻止者
推荐阅读最新更新时间:2024-05-02 22:36
Arm承认其Cortex M可被侧信道攻击但否认已被破解
Arm 上周五发表声明称,对其基于 TrustZone 的 Cortex-M 系统的成功侧信道攻击(side-channel attack)“并不意味着该架构提供的保护失败”。 “Armv8-M 架构的安全扩展并不意味着可以防止由于控制流或内存访问模式引起的侧信道攻击。实际上,此类攻击并非特定于 Armv8-M 架构;它们可能适用于任何代码,依赖于密码的控制流或内存访问模式。”Arm说道。 Arm 在上周的 Black Hat Asia infosec 会议上发表了一份声明——题为“把你的秘密交给我,MCU!对微控制器的微架构定时攻击是实用的”——声称该芯片设计公司的微控制器容易受到侧信道攻击。 基于 2018 年发现
[单片机]
益和推出多信道耐压测试扩充箱
益和推出安规耐压测试仪器7630/7631以来,多受客户佳评。为满足客户更多需求,该公司近期推出8 Channel及16 Channel两种不同测试信道的扩充箱。可随意组合任意channel的多点位测试。7508为8Channel扩充箱,7516为16Channel扩充箱。扩充箱长度与宽度皆和7630/7631相同,7631搭配7516可堆栈3台,7630搭配7516可堆栈4台。 该扩充箱主要功能如任意台数堆栈,依照待测产品总需求信道选择扩充台数,方便堆栈或卸下;搭配7630/7631配置彩色绘图型大屏幕使用,在编辑测试参数时操作更加简易;配置多重脱线防呆功能及信道自检功能,更能有效率与治具结合,减少安装时间。 7508/7516
[半导体设计/制造]
AVR AT90S1200 IP核设计及复用技术
1 引言 随着芯片集成程度的飞速提高,一个电子系统或分系统可以完全集成在一个芯片上,IC产业中形成了以片上系统SOC(System-on-Chip)技术为主的设计方式。同时IC设计能力和EDA工具却相对落后于半导体工艺技术的发展,两者之间日益加剧的差距已经成为SOC技术发展过程中一个突出的障碍。采用基于IP复用技术进行设计是减小这一差距惟一有效的途径,IP复用技术包括两个方面的内容:IP核生成和IP核复用。文中采用IP核复用方法和SOC技术基于AVR 8位微处理器AT90S1200IP Core设计专用PLC微处理器FSPLCSOC模块。 2 IP核复用 IP核复用(IP Core Reuse)是指在集成电路
[单片机]
创毅视讯开发首款CMMB版芯片
在即将全面商用之际,广电总局力挺的CMMB手机电视标准得到了国产厂商的大力支持。北京创毅视讯科技有限公司近日宣布,已经研发出拥有自主知识产权、支持CMMB*1标准的手机电视的信道解调芯片IF101。 在此前结束的第十届中国北京国际科技产业博览会上,创毅视讯科技有限公司曾以CMMB“手机电视”核心芯片亮相。“对手机电视产业而言,没有芯片几乎等于没有产业。如果采用国外技术和标准,会使我国市场被国外企业所控制。” 创毅视讯董事长张辉表示,是否有产业化的芯片,是衡量技术标准是否成功的一个重要标志。 据介绍,基于IF101芯片的联想手机已于今年5月通过了测试,流畅进行了手机电视节目的接收与播放。这标志着由北京创毅视讯科技有限公司自主研发的
[焦点新闻]
泰克“全内置”串行数据接收机测试方案
泰克日前推出SerialXpress®高级软件。这种新软件为高速串行数据接收机测试直接合成波形,特别适合测试SATA、SAS、PCI-Express、HDMI和DisplayPort串行数据标准及工作速率在6 Gbps以下的任何其它串行总线技术。SerialXpress管理这些波形的创建工作,然后在AWG7000系列任意波形发生器上高速传送波形。装有SerialXpress软件的AWG7000是世界上唯一的用于接收机极限测试和BER测试的全内置高速串行数据信号发生器。使用户不再需要使用多台仪器和复杂的测试配置来进行测试。 3 - 6 Gb/s的下一代高速串行标准缩小了定时余量,从而要求进行从接收机检定到辅助传统发射机的测
[测试测量]
应对侧信道分析的最新研究
关于变体4的相关细节和防御信息 作者:Leslie Culbertson,英特尔公司执行副总裁兼产品保障与安全部门总经理 在今年1月,谷歌Project Zero 团队(GPZ)*披露了基于预测执行的侧信道分析方法之后,英特尔一直持续与业界研究人员合作,以了解类似的方法是否会被用于其他领域。我们知道,在一个可预测的周期内通常会出现新型的安全漏洞,包括原始安全漏洞的新变体。 具体到侧信道攻击的漏洞也不例外,我们今年初采取的其中一个措施是加大漏洞报告赏金计划,支持并加速发现新的方法来识别漏洞。这项计划获得的反响令人鼓舞,我们感谢一直以来安全研究社区与我们的紧密合作。 作为这项持续工作的一部分,针对影响我们和其他芯片制造
[网络通信]
数字RF改变整个RF测试仪器格式
引言 在采用了一流的突破性的技术后,现在实时频谱分析仪似乎准备严峻挑战传统扫频分析仪和矢量信号分析仪。实时频谱分析仪从一开始就提供独特的实时功能,但同时只提供了传统频谱分析的基本单元,而现在最新实时频谱则同时融合了实时频谱分析仪与传统频谱分析仪的最佳特点,这是否会使整个局面改观呢? 发展历史 五年前,大多数信号分析仪要么是扫频分析仪,拥有完美的动态范围,但用来分析复杂的信号,带宽过窄;要么是矢量信号分析仪,拥有较宽的带宽,但动态范围过小。当时,大多数工程师只需选择前一种产品或后一种产品。然而有一些用户既需要频谱测量,又需要调制分析。这时,泰克推出了RSA2200A和RSA3300A实时频谱分析仪产品,这些分
[测试测量]
小广播
热门活动
换一批
更多
最新嵌入式文章
更多精选电路图
更多热门文章
更多每日新闻
- CGD和Qorvo将共同革新电机控制解决方案
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- 玩法进阶,浩亭让您的PCB板端连接达到新高度!
- 长城汽车研发新篇章:固态电池技术引领未来
- 纳芯微提供全场景GaN驱动IC解决方案
- 解读华为固态电池新专利,2030 叫板宁德时代?
- 让纯电/插混车抓狂?中企推全球首款-40℃可放电增混电池,不怕冷
- 智驾域控知多少:中低端车型加速上车,行泊一体方案占主体
- Foresight推出六款先进立体传感器套件 彻底改变工业和汽车3D感知
更多往期活动
11月15日历史上的今天
厂商技术中心