用于汽车自动空调的电源、电机驱动及分立元件方案

发布者:星光曲折最新更新时间:2013-07-02 来源: eefocus关键字:汽车电子  空调  CCR  LED驱动 手机看文章 扫描二维码
随时随地手机看文章

在当今的汽车设计中,空调已是标准的舒适性配置。从功能上讲,当今的汽车空调实际上是将加热、制冷及通风等功能一体化,成为汽车加热、通风空调(HVAC)系统(本文将简称为“汽车空调”)。从调节方式讲,汽车空调包括手动空调、半自动空调及自动空调。本文将专门围绕汽车自动空调进行探讨,介绍安森美半导体相应的电源供电、电机驱动及分立元件等方案,帮助设计人员选择适合的产品,用于汽车自动空调设计。

汽车空调系统包含加热及通风系统、空调制冷及电子控制单元(ECU)等不同子系统。在加热及通风子系统,新鲜空气从外部的管道通向车厢内部,提升乘客的舒适性及安全性。进入的空气流过小的发热芯,连接到发动机的冷却系统。空调制冷子系统则通过不断蒸发和冷凝,将车内的热量转移到外面的空气中,在降低车内温度的同时也降低湿度。图1是典型的汽车自动空调界面,图2则是系统架构图。


图1. 典型汽车自动空调用户界面


图2:汽车空调系统架构图[page]

汽车空调的电源供电

如图2的汽车空调系统架构图所示,汽车空调系统需要为微控制器(MCU)、各种传感器、驱动器、存储器等供电。常见的汽车电池电压包括12V或24V。如果采用24V系统供电,则需要高耐压产品,加强热管理,提升电源能效并控制成本。如果采用12V系统供电,则成本更具优势,要求较低静态电流及采用优化的封装。不同供电电压也涉及到不同的汽车空调电源供电架构图,如下图所示。但无论是哪种架构,都会用低压降(LDO)稳压器将24V或12V电压转换为5V。安森美半导体提供阵容丰富的LDO产品,表1列出的是适合于汽车空调应用的LDO。它们能够承受高输入电压,提供低静态电流,通过的汽车行业AEC-Q100认证,符合汽车空调应用要求。


图3:汽车空调电源转换架构

汽车中的外部传感器必须采用稳定的电源,即LDO跟随稳压器(或称电压跟随器)。这些LDO跟随稳压器必须得到充分保护,以防诸如对地短路、电池短路、电池反接等故障;同时,其输出电压必须与参考电压高度一致。安森美半导体提供具有完善保护功能的电压跟随器NCV8184,为外部传感器供电。NCV8184是一款单片LDO跟随稳压器,提供可调节的缓冲输出电压,且密切匹配参考输入电压(精度达±3 mV)。这器件的输出电流能力为70 mA,在50 mA电流时的典型压降仅为0.35V;静态电流仅为70 μA。

用于汽车空调的电机驱动器

根据不同的地区及不同汽车整车厂的配置需求,汽车空调风门执行器可以采用不同的拓扑结构,如直流电机、单极性步进电机及双极性步进电机。

最常见的风门执行器是直流电机,并集成位置传感器,将风门位置信号反馈给微控制器。为控制直流电机的正转或反转,需要使用2个高边(HS)开关及2个低边(LS)开关组成全桥电路。通常情况下,这些高边或低边开关已经集成各种完善的保护,如过压保护、过载保护及过温保护等。在步进电机方面,单极性步进电机需使用4个低边开关,而双极性步进电机需使用4个高边开关和4个低边开关。


图4:汽车空调风门执行器的电机结构及驱动需求

直流电机风门执行器的工作电流一般在100mA左右,最大堵转电流小于450mA。此外,需要H桥驱动来改变运行方向。电机驱动器还需要故障诊断报告,且提供足够的保护功能。安森美半导体的NCV77xx系列器件可用于驱动直流电机风门执行器,如NCV7718。NCV7718是一款六路半桥驱动器,高、低边在驱动器芯片内部连接,并以H桥输出。这器件以6路PMOS作为高边驱动,6路NMOS作为低边驱动,能够提供0.55 A持续驱动电流,集成了内部续流二极管。NCV7718能以正向、反向、制动及高阻态工作,能够通过16位SPI接口控制,带有专门设计用于汽车及工业运行控制应用的保护功能,如欠压及过压锁定、过流保护、过温保护、欠载保护及鉴别故障报告等。

除了直流电机驱动器,安森美半导体还提供用于汽车空调的单极性及双极性步进电机驱动器。安森美半导体的单极性步进电机驱动器包括NCV7608和NCV7240等。其中,NCV7608是8路高、低边可配置驱动器,每通道能提供350 mA驱动电流,并提供完善的保护功能;NCV7240是8路低边驱动器,每通道能提供600 mA驱动电流,可采用16位SPI接口控制,也提供完善的保护功能(如开路诊断、过载保护及过温保护等)。这两款器件分别采用SOIC28和SSOP24封装。

用于汽车空调的双极性步进电机驱动器包括AMIS-30730和NCV70501等。汽车空调的进气风门需要采用低噪音设计,因为这个执行器是连续工作模式。采用NCV70501这样的双极性步进电机驱动器可以实现低噪音。NCV70501通过H桥驱动步进电机,可以通过设置内部寄存器来改变电机的方向和步数等。AMIS-30730则是单芯片智能步进电机驱动器方案,内部包含双极性步进电机驱动、微控制器(MCU)内核、LIN接口、ROM、RAM及EEPROM等。

外部负载高边或低边驱动器

除了风门执行器,还需要驱动或控制外部负载,如中央电器盒。安森美半导体提供用于外部负载驱动的SmartFET,可用于高边或低边驱动,如NCV8440、NCV8401/2/3/5/6等低边驱动器,以及NCV8450、NCV8452等高边驱动器。这些SmartFET是带保护的MOSFET,在功率MOSFET的基础上增加了多种保护功能及高边或低边驱动等。以NCV8452高边SmartFET为例,这器件的导通阻抗为200 m?,过压保护等级为41V,输出电流限制值为1 A,集成了丰富的保护特性,如短路保护、过载保护、过温关断及自动重启、内部钳位二极管过压保护、ESD保护 及逻辑电平控制等。

[page]


图6:汽车空调外部负载的高边或驱动架构及高边驱动器NCV8452应用示例

鼓风机用电机驱动器及MOSFET


鼓风机是汽车空调的重要部分,包含有刷直流电机及无刷直流电机等不同驱动类型。采用有刷直流电机时,采用PWM控制,最大工作电流达30 A,需要用到功率MOSFET。采用无刷直流电机时,需要用到预驱动器及功率MOSFET。安森美半导体提供用于无刷直流电机的三相预驱动器,如LV8901、LV8902及MC33033/5等。安森美半导体还提供用于鼓风机驱动的一系列功率MOSFET,如NVB5860N/NL、NVMFS5830NL、NVMFS5832NL、NVB5404N、NVB5405N、NVD5802及NVD5890N等。

用于汽车空调的恒流驱动器

安森美半导体基于自偏置晶体管(SBT)技术的恒流稳流器(CCR)同样可用于在汽车空调应用中驱动LED。这些LED驱动器包括双端可调节输出版本及三端可调节输出版本,适合于低噪声系统。这些CCR内置LED热保护,能够替代低成本LDO,可抑制由于电压波动引起的LED亮度变化,通过了汽车级产品认证,帮助缩短设计/认证时间。这些低电流CCR LED驱动器包括NSI50010YT1G、NSI45015WT1G、NSI45020T1G、NSI45020AT1G及NSI45020JZT1G等。

用于汽车空调的其它产品

当今的汽车制造商设计分散、分布式系统,这些系统通过LIN、CAN及FlexRay等行业标准接口相互连接。安森美半导体提供这些标准接口技术的车载总线收发器,其中包括用于汽车空调的NCV7321 LIN收发器。这器件的最高通信速率为20 kbps,同时具备高压模拟和数字功能,符合欧洲LIN物理层规范2.1版及美国SAE J2602-2规范,符合OEM要求,提供出色的电磁兼容(EMC)性能,系统ESD保护能力高达13kV。

此外,安森美半导体还提供用于多种系统基础芯片(SBC)。这些系统基础芯片集成了车载网络(如LIN、CAN及FlexRay等收发器)、电源(如线性稳压器、DC-DC稳压器)、监控(如看门狗、SPI、状态、中断),以及I/O等。其中,用于汽车空调应用的SBC有如NCV7420和NCV7425,这两款器件集成了LIN收发器及3.3V或5V稳压器,输出电流能力分别为50mA及150mA。

总结:

汽车空调是安森美半导体在汽车应用中所关注的核心应用之一。 安森美半导体提供一系列应用于汽车空调应用的产品,包括电源供电(如LDO及电压跟随器)、电机驱动器、SmartFET高边/低边驱动器、分立元件(功率MOSFET,CCR LED驱动器)、车载网络收发器及系统基础芯片等。安森美半导体将继续致力于研发高性能的标准和专用器件,满足汽车空调中越来越苛刻的需求,并用优异的产品不断提高汽车空调系统的安全性、可靠性及燃油经济性。

关键字:汽车电子  空调  CCR  LED驱动 引用地址:用于汽车自动空调的电源、电机驱动及分立元件方案

上一篇:智能汽车时代来临 汽车电子迎新发展
下一篇:节能安全引领潮流 智能车辆引爆车载通信需求

推荐阅读最新更新时间:2024-05-02 22:42

基于单片机CMOS汽车电子调节器
基于单片机CMOS汽车电子调节器引言 汽车电子化程度现已成为国际衡量汽车先进水平的重要标准,也正是由于这个原因推动和刺激当前汽车电子这一行业不断向前发展,各国都竞相发展,不断应用高新技术,提高汽车电气化性能,以获求更大市场。 目前汽车电压调节器通病就是稳定性差、寿命短、调节器的不稳定会导致发电机输入电压不稳定,从而影响整车用电设备的电源电压存在很大的波动,影响整车电路正常工作同时也会降低用电设备寿命,调节器的寿命短不仅会带来经济负担,对发电机输出电压的稳定也是不利的 如今单片式CM0S汽车电子调节器的出现,,从而减小了调节器的体积,使其可以和交流发电机制作在一起。就是将电压调节器设计成单片CMOS集成电路,这样既提升了调节器
[单片机]
基于单片机CMOS<font color='red'>汽车电子</font>调节器
PAM推出内置MOSFET高压LED驱动
PAM(Power Analog Microelectronics)推出内置MOSFET高压30瓦的LED驱动器,采用台积电的双极型CMOS-DMOS(BCD)工艺制成。具有从5.5V 到40V很宽的输入电压范围,它是一个非常灵活的LED驱动器,可以工作于升压、降压、升降压(SEPIC)三种工作方式。它可以利用内置的MOSFET来驱动10个3瓦的LED,或者30个1瓦的LED。由于它在很宽的电压范围内的恒流特性和95%以上的效率,使它不论是在输入电压跌落或很高的环境温度时,都能正常工作。因为利用了台积电的40伏BCD工艺,和PAM公司已申请的专利,它还集成了一个功率MOSFET管。其他的功能还包括过流保护、过压保护、欠压锁定和过温
[电源管理]
HC705单片机的LED驱动技术
    本文介绍了使用MC68HC705J1A大电流引脚,不使用外部晶体管放大电路,直接驱动LED的的方法。文中所提出的计算公式对不同的单片机(MCU)(低电平电流IOL 不同)都适用。只是公式中的最大低电平电流要改变。     正常的HCOMS I/O引脚具有足够的电流来驱动HCMOS或TTL电路的输入。这些引脚通常在输出低电平0.4V时能够吸入1.6mA的电流。但是在许多应用场合,当1个CMOS输出引脚用于驱动较大电流的设备时,就显得力不从心了。例如LED(发光二极管)、前级运算放大器等,大约需要10mA电流。通常的做法是再加驱动电路,如:用三极管的放大电路驱动或用其他如75452等驱动能力大的集成电路来驱动。   
[应用]
PWM调光在LED驱动中的设计详解
  不管你用Buck, Boost, Buck-Boost还是线性调节器来驱动LED,它们的共同思路都是用驱动电路来控制光的输出。设计者主要有两个选择:线性调节LED电流(模拟调光),或者使用开关电路以相对于人眼识别力来说足够高的频率工作来改变光输出的平均值(数字调光)。使用脉冲宽度调制(PWM)来设置周期和占空度可能是最简单的实现数字调光的方法,并且Buck调节器拓扑往往能够提供一个最好的性能。   一些应用只是简单地来实现“开”和“关”地功能,但是更多地应用需求是要从0到100%调节光的亮度,而且经常要有很高的精度。   设计者主要有两个选择:线性调节LED电流(模拟调光),或者使用开关电路以相对于人眼识别力来说足够高的频率工
[电源管理]
分享一个新方案:辅助电源方案用于汽车功能电子化
辅助电源单元在电池电动汽车(BEV)和混合动力电动汽车(HEV)的电源应用中无处不在,对于为控制、通信、安全、驱动等通常低于 20 V 的各种低压子系统供电至关重要,而且,电源本身的电源可能来自+400 V 直流高压总线,如车载充电(OBC)系统或 48 V 或 12 V 电池电压轨。 在如此广泛的应用范围内,对辅助电源的要求非常多样化,因而市场上产生了无数替代方案和运用。 尽管这些电源是辅助系统,但仍需要确保高可靠性和稳定性,因其在为关键模块供电,如可能包括核心控制器的逻辑级电路,或导通和关断功率金属氧化物硅场效应晶体管(MOSFET)和绝缘栅双极型晶体管(IGBT)的门极驱动器。 同时,要求紧凑的设计和出色的性价比
[汽车电子]
分享一个新方案:辅助电源方案用于汽车功能电子化
1A降压恒流LED驱动芯片AT8860特点、应用
     AT8860 是一款驱动高亮度LED 的降压恒流驱动芯片,AT8860 外部采用极少的元器件,为MR16 LED灯杯、LED 舞台灯、车载LED 灯、太阳能LED 灯和LED 路灯提供一个极高性价比的解决方案。AT8860输入电压范围从5 伏到40伏,输出电流通过采样电阻设定,单颗LED 最大输出电流可达1000 毫安。 AT8860 采用的恒流控制方法使得LED 电流精度高达±3%。AT8860 通过ADJ 引脚接受0.5-2.5V 的模拟调光以及频率范围很宽的PWM 调光。当DIM 的电压低于0.3V 时,功率开关关断,AT8860 进入极低工作电流的待机状态。 AT8860 内置功率开关,根据不同的输入电压,AT8
[电源管理]
1A降压恒流<font color='red'>LED驱动</font>芯片AT8860特点、应用
车载以太网物理层芯片扼住汽车电子架构的咽喉
无论是软件定义汽车,还是分布式ECU抑或是自适应Autosar,都离不开智能汽车时代的基础技术车载 以太网 ,对于硬件工程师来说,车载以太网物理层和交换机是其最关注的芯片,这也是利润率远超过高算力芯片的领域,也是基本上被欧美企业垄断的领域。 上图是整个车载以太网的7层OSI模型与标准分布图,我们最常提到的是TSN或EAVB,而物理层标准鲜少有人提及。因为绝大多数工程师都不会和物理层打交道。 很多人都在说域控制器、服务导向架构、分布式计算或软件定义汽车,殊不知关键的1G车载以太网物理层芯片在2020年才SOP,而多G带宽的车载以太网物理层标准才刚刚在去年完成,SOP还得一年或两三年左右。没有这个芯片,什么域控制器、
[汽车电子]
车载以太网物理层芯片扼住<font color='red'>汽车电子</font>架构的咽喉
降压调节器如何“变身”智能可调光LED驱动器(一)
凭借使用寿命长和功耗低的优势,LED有望改变整个照明行业,但它的快速采用面临的主要障碍是LED本身的成本居高不下。LED灯具(完整电力照明设备)的成本各不相同,但LED的成本通常占据了整个灯具成本的大约25%至40%,而且预期在今后多年内仍会占据很高比例(图1)。   图1. LED灯具成本的细分   降低整体灯具成本的一种方法是在产品规格允许的范围内,在可能最高的直流电流下驱动LED.此电流可能远高于其“分档电流”。如果正常驱动,这样可能产生更高的流明/成本比率。   图2. LED光输出和效率与驱动电流   但是,这种做法需要更高电流驱动器。很多解决方案在低电流下(《500mA)驱动LED,但很少有高电流(70
[模拟电子]
降压调节器如何“变身”智能可调光<font color='red'>LED驱动</font>器(一)
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved