由于集成的功能不断增多以及外形尺寸的日益缩小,最新一代功能丰富的更小型便携式设备将使电源管理设计发挥关键作用。一般来说,便携式设备主要包括微处理器、I/O外设、LED背光、闪存和/或硬盘驱动器(HDD)、数字和模拟电路,这些功能模块对电源的要求各不相同。为使这些功能模块正常工作并最小化功耗以实现更长的电池使用时间,系统设计工程师面临如何设计嵌入式电源管理解决方案以满足电源要求的挑战。本文对电源要求进行了分析,并重点阐述如何设计这些电源管理电路。
为微处理器供电
微处理器是处理各种数据和命令的核心器件,大多数微处理器都采用CMOS电路并具有开关功耗和静态功耗。数字电路的每一次开关转换均对数字电路的输出电容进行充放电,由此产生的功耗由下式表示:
其中,C为总负载电容,fS为开关频率,VCORE为施加在微处理器上的电源电压。根据此公式得知:时钟频率的降低将使功耗呈线性下降,电压的降低可导致功耗呈二次方程式下降。随着微处理器处理速度越来越快,施加在微处理器上的电压将降低小于1V以最小化功耗。
微处理器最常见的供电电压范围为1.0~1.5V。从电压要求来看,大多数微处理器都具有严格的电压容差,在稳定状态和负载瞬态时的电压容差不到100mV。由于微处理器对低工作电压和大电流(具有大的边沿斜率)的要求,电源管理设计工程师面临既要满足严格的电压瞬态要求,又要解决系统功耗预算和电池运行时间(高转换效率)的难题。微处理器的功耗通常为系统总功耗的30~40%左右。通常为便携式设备供电的锂离子电池,采用LiCo02阴极材料,其典型的电池工作电压范围介于3.0~4.2V。
图1所示的同步降压转换器拓扑能有效地将电池电压转换为低内核电压。通常,具有集成MOSFET的固定频率脉宽调制(PWM)DC/DC转换器在正常负载条件下具有90%以上的转换效率,但由于开关损耗和栅极驱动损耗的影响,它们在轻负载条件下(如便携式设备的待机模式)的效率较低。为使便携式设备实现超长的电池待机时间,转换器能在轻负载条件下提供高效率非常重要。
|
图1:(a) 同步降压转换器拓扑结构图;(b) 负载瞬态过程中的负载电流和电感电流 |
首先是要设计降压转换器工作在非同步模式,这样就避免了因尽量减少与回路电流有关的传导损耗而导致的负电感电流。此外,脉宽频率调制或脉冲跳跃(pulse skip)模式通常用于最小化栅极驱动和开关损耗。诸如TI开发的节电模式等专用技术通过关闭部分控制电路来降低开关损耗,并使PWM控制器的静态电流最小。在150μA的负载条件下,可以实现低至18μA的静态电流和超过70%的效率。
然而,对从轻负载到高负载的负载瞬态而言,这种降压转换器带来了另一个挑战,即它需要一个延迟时间来唤醒PWM控制器并使其进入工作状态。在此延迟时间内,输出电容必须为负载供电,这将引入一个与固定频率PWM转换器有关的额外电压降。如何克服节电模式带来的这一负面影响呢?微处理器的电压规范允许具有±5%的总容差,其中包括稳定状态误差和负载瞬态。可以将轻负载时的输出电压提高1%左右,以补偿由于控制电路唤醒延迟引起的额外压降。
事实上,对移动处理器而言,提高轻负载时的输出电压是一贯的做法,这一做法被称为负载线调节。这种技术增大了瞬态电压的摆幅,因此它允许对额外电压降进行补偿或使用更小的输出电容。此外,控制环路设计和电感设计对电压瞬态响应的影响非常大。那么,如何选择正确的电感和设计控制环路带宽来实现快速的瞬态响应,并在保持高效率的同时满足电压瞬态要求呢?
对从小于1mA负载到满负载的阶跃负载瞬态而言,电压瞬态响应通常应在±3%以内。当阶跃负载被施加到系统和输出电容时,该电压瞬态与等效串联电阻(ESR)和转换延迟密切相关。通常情况下会采用小型ESR陶瓷电容,因此,通过优化环路设计和电感值来最小化输出电容器两端的电压瞬态最具挑战性。输出电容器需要在瞬态响应期间提供负载电流。微处理器所需电流的斜率比降压转换器电感电流的斜率大得多。负载电流和电感电流之间的差决定了需要由输出电容提供的电荷数量,如图1(b)所示。如果可以减少该非平衡电荷,则能降低瞬态电压,减小输出电容。电感电流的斜率越大,瞬态响应就越快,压降也就越低,因此瞬态响应取决于电感电流跟随负载电流的方式。电感电流上升时间与此处描述的控制环路带宽密切相关。
其中,fC为闭环环路带宽。另一方面,反馈控制环路在轻负载到高负载转换期间使占空比加大,在电感两端出现净电压增加,这会引起电感电流增加。平均电感电流的上升时间由下式得出:
其中L、VIN以及ΔD分别为电感、输入电压和占空比增加值。在给定带宽下提供同样快速的瞬态响应的最大电感被称为临界电感。该临界电感为经过优化的电感,可为实现最高效率提供尽可能高的带宽和最小电感电流纹波。通过以上两个方程式能得到在给定环路带宽条件下实现最快瞬态响应的临界电感。
其中,ΔDMAX为负载瞬态期间最大的占空比增加值。由此可见,采用小型电感也可以获得高环路带宽,从而实现快速的负载瞬态响应以满足瞬态电压要求。图2给出了小型电感和大型电感的输出电压瞬态响应曲线,它表明电感越小,负载瞬态响应越快。
关键字:便携式设备 电源管理 静态功耗
引用地址:
便携式设备中的关键电源管理电路设计
推荐阅读最新更新时间:2024-05-02 22:53
stm32之电源管理(实现低功耗)
前言:STM32F10xxx系列产品都有电源管理模块,芯片功耗会影响到一个产品的续航能力;比如在一些终端传感器场合里,为了减轻后期的维护投入,要求长期工作时间较长,更需要合理的芯片功耗管理。芯片自带几种运行模式,包括正常模式、睡眠模式、停止模式、待机模式。越往后,芯片的功耗越低,但能执行功能就越少。低功耗的电源管理策略就是在芯片不需要对外界响应的时候进入低功耗模式,而当外界条件满足的时候,退出低功耗模式(唤醒),正常执行处理工作。下面对其模式之间的转换和各个模式下的芯片内部的运转情况等一探究竟。 写代码前要先了解芯片的特性及工作原理,难免会先阅读一些长长的文档。下面核心讲解一些要点。 1.硬件原理 下图是芯片的电源框架:
[单片机]
PowerintLNK419EG18WT8管灯LED驱动设计方案(DER298)
LED驱动器采用LinkSwitchTM-PH系列LNK419EG,输入电压90VAC到265VAC,输出电压200V/90mA.拓扑采用单级非隔离降压-升压,具有紧凑和低元件数的特点,线路和负载调整有于2%,110VAC的效率大于89.5%, THD小于20%,而230VAC时的效率大于90%,THD小于28%.本文介绍了设计方案DER298的主要特性,优势和指标,电路图和材料清单. Constant Current ( 2% Regulation), Non-Isolated Buck-Boost, Power Factor Corrected,18 W LED Driver Using LinkSwitchTM-PH
[电源管理]
AME5280:一款DC-DC电源管理控制器
AME5280是一款DC-DC电源管理控制器,其高效率同步切换式直流转换器,3V~5.5V之输入电压范围,4A连续电流输出,最大5.3A瞬间电流输出。晶体管导通电阻仅有80mΩ,可在大电流通过时大幅减少热废能。300KHz~1.4MHz可调式工作频率,满足一般降压频率需求。同步式降压整流,不需要外部萧特基二极管做下桥组件,减少功率损耗、提升整体效能并降低成本。 在保护方面,AME5280提供短路降频保护,在电流过大发生短路状况时可以自动降低频率,将电流稳定在定值避免过热烧毁,再搭配过温保护与过电流保护,提供最完整的防护机制,确保产品运作无虞。 AME5280适合应用在5V输入电源降压至最低0.8V的大电流应用,特别
[电源管理]
新型便携式HIV病毒检测设备问世
据国外媒体报道,科学家开发出一种能够实时监测HIV病毒的手持式移动设备,只需在手指取一滴血,该设备就能显示出HIV病毒结果。相关文章发表在近期的Clinical Chemistry上。该技术能够面向偏远乡村,进行快速方便的诊断。
全世界HIV感染者有近三千四百万,而68%感染者居住在撒哈拉以南非洲,第二大聚集区是东亚和东南亚。这些区域的很多HIV感染者无法进行诊断主要是由于很难到达医疗中心。这将进一步加重该国家本已繁重的财政负担,预计每年因艾滋病GDP减少1.5%。由于父母因艾滋病死亡,每年会产生一千六百多万艾滋病孤儿。
所以偏远的医疗条件差的地方急需低成本移动式的HIV检测装置。在本研究中,Cur
[医疗电子]
准确测量便携式设备电池剩余电量的方法
一、前言 使用便携式电子产品,希望能够随时知道电池的所剩电量,所能持续的工作时间,并且据此调节相关应用,这无疑将是一个非常方便的事情,尤其适合使用智能手机的商务人士。电池电量检测技术在笔记本电脑中已经屡见不鲜,多数笔记本电脑都有电源管理的选项,提供不同的电源工作模式以及电池报警功能。但是在更加小型化的便携产品市场,这一技术却还不多见。 便携式产品提供的功能越来越纷繁,用户日益需要准确地监测电池电量,以便灵活管理可用电源,明确显示剩余工作时间,尽可能延长系统运行的时间。现在大多数手机采用的电量测量方法还比较简单,缺乏精确度。目前主流的检测方法是简单测量电池电压,估算相对应的电池剩余电量。总电量除以4或5,也就是通常能在手
[测试测量]
为便携式设备快速充电
移动设备正日益成为我们日常生活不可或缺的一部分。以智能手机为例,除了简单的手机呼叫功能外,智能手机现在还具有丰富的特性,能够支持社交网络、Web 浏览、消息发送、游戏以及大型高清屏幕等应用。所有这些特性已让手机成了高功耗设备。电池容量和能量密度得到了显著提升,以满足更高的电源需求。充电 10 分钟即可为设备供电一天,而充电一小时即可获得 80% 的电量,这已成了高端用户体验的趋势。如果将快速充电要求和大型电池容量结合在一起考虑,便携式设备的充电电流可以达到 4A 甚至更高。这种对大功率的需求给电池供电系统设计带来了许多新的挑战。 USB 供电 便携式设备通常使用 5V USB 电源。传统 USB 端口如果使用 USB2.
[手机便携]
智能汽车电池管理系统应用设计
很多人的眼光聚焦于IGBT,功率器件是很贵,确实也很难做,但是如果出点事情,把ADC这一层的模拟芯片给拿掉了,我们的电池管理系统也就没了根。 插入一句:我认识两家芯片企业,都想做这个AFE,第一家好久之前提过估计后面项目下马;另一位姐姐的项目,到底什么样了,感兴趣的话可以找她聊聊看。 如下,某车企IGBT是自己的,AFE电池前端采集芯片呢? 模拟前端采集芯片:主要用于对电芯电压进行采集的多通道芯片 这里面最贵的就是这颗BMIC 我大概做了一个梳理,目前国内主流用的三家,LT、美信和TI都是米国公司 结合Davide Andrea在2018年3月做的更新,从2013年开始,他把使用的A
[汽车电子]
生物阻抗谱技术的进步如何推动便携式设备创新
摘要 借助生物阻抗谱技术,科学家和医生如今能够监测透皮给药的有效性和药代动力学特性。本文从基本原理以及人体真皮组织特征等多个角度,对这门技术展开了详细介绍,并描述了可用于实现便携式监测设备的技术。 什么是生物阻抗谱? 阻抗谱是一种用于表征各种介质电特性的测量技术,可测量介质在交流电流下的阻抗或电阻,此阻抗随频率不同而变化,通过分析这种变化,我们就能以经济高效的方式快速了解通常难以评估的材料特性。阻抗测量基于两个可测量量(电压和电流)的比率。为了测量阻抗,需要通过施加电势来扰动系统。有两种方式可实现这种扰动:(a)使用交流激励电压,测量交流电流响应;(b)使用交流激励电流,测量交流电压响应。如果施加的电压或电流是小信号
[模拟电子]