先进节能直流无刷电机控制器

发布者:cyzcee最新更新时间:2014-01-24 来源: eccn关键字:PWM法  直流无刷电机  正弦波 手机看文章 扫描二维码
随时随地手机看文章

节能减排的议题在国际舞台中不断地受到重视,其目的就是为了防止环境污染继续恶化、改善气候剧烈变动,以及在地球有限资源情况下订定条款并相互约束。在普通消费者看来,节能减排无非就是随手关闭电源,或搭乘公共交通系统,以便减少资源的浪费及实现资源回收再利用等目的。但是除了这些随手可以实现的动作之外,另一个根本问题就是如何提高能源使用效率。美国 EPRI就曾指出,全球电机所耗费的金额一年高达950亿美金,占了所有电力51%;其次是照明19%,冷却/供暖16%, IT 14%。

无论是工业、家庭还是商业用电,电机所消耗的能源都占有很高的比例。以中国台湾2007年的工业用电为1172亿度为例,电机用电约820亿度,占了总体用电的70%。如果改善电机系统的输出、输入功率比,就可以提高用电效率。

所以各个国家或者地区都针对电机及照明这两大类有关产品提出改进计划。

表1  各国对电机和照明产品的改进计划



家庭用电大约可分为电源转换输出(灯、电视)及电机驱动(冰箱、洗衣机、冷气、风扇、吸尘器等)这两大类,其中电机驱动所消耗的电力占家庭用电的70%。根据台湾工程研究院的数据,如果电机效率提升10%,一年约可节省100亿度的电量,相当一座大中型核能发电站所发的电量。若再以全球一年的发电量约为20兆度来计算(在中国1兆是1万亿),可以节省2兆度的用电量。这个惊人的数字等同于两百座中大型核电站的电量。而且在能源法规及环保议题带动下,产业、产品升级已是维持经济持续发展的必要条件。


图1

当今家电产品的驱动电机分为交流电机、直流电机两类;直流电机又分为直流有刷及无刷电机。由于材料科学的进步,直流无刷电机(BLDC 或 PMSM)的研发及生产近期有相当大的突破。直流无刷电机具有安静、无噪声、免维护保养、寿命长、体积小的特性及优点;尤其是高效输入/输出比,在节能及环保方面均有优异表现。

直流无刷电机在技术层面以及进入门槛的要求都比其他电机(如交流、直流有刷)更高,因此拥有较高的附加值;同时在面临能源短缺及环保要求双重压力下,高效率环保产品自然成了追求的目标,而采用直流无刷电机设计的产品轻松符合以上要求。



直流无刷电机控制驱动上可采用方波驱动(Trapezoidal Control)或磁通正弦PWM驱动两种控制系统算法。其中,磁通正弦驱动备受业界嘱目。


磁图

2通正弦PWM

仅依靠3个霍尔零件无法顺利产生正弦波相电流控制信号,必须整合高分辨率的位置编码器来辅助霍尔零件,以取得更精确的位置信息,如此方能产生所需的正弦波。但位置编码器的高成本却不是一般应用所能接受的,空间向量调制应运而生。

空间向量调制PWM(SVPWM)也叫磁通正弦PWM法。它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用控制器不同的开关模式所产生的实际磁通去逼近基准圆磁通,由它们的比较结果决定控制器的开关,形成PWM波形。此法从无刷电机的角度出发,把控制器和电机看作一个整体,以内切多边形逼近圆的方式进行控制,使直流无刷电机获得幅值恒定的圆形磁场(正弦磁通)。[page]

具体方法又分为磁通开环方式和磁通闭环方式。磁通开环法用两个非零向量和一个零向量合成一个等效的电压向量,若采样时间足够小,可合成任意电压向量。此法输出电压比正弦波调制时提高15%,谐波电流有效值之和接近最小。磁通闭环方式引入磁通反馈,控制磁通的大小和变化的速度。在比较估算磁通和给定磁通后,根据误差决定产生下一个电压矢量,形成PWM波形。这种方法克服了磁通开环法的不足,解决了直流无刷电机低速时,定子电阻影响大的问题,减小了电机的震动和噪声。

在飞兆半导体产品中,有一系列无刷电机应用参考电路。其中,控制单元(Motor Control IC)-FCM8201/02具备着方波/弦波两种驱动方式,可依不同产品用途择一使用及多种保护功能,有别于一般MCU单元需要软件撰写的能力方能设计使用,降低开发技术门槛,并可大幅的缩短厂商产品开发量产时程。其他的如飞兆半导体智能功率模块 (SPM)  (IGBT/MOSFET,HVIC)、PFC、电源管理IC等,飞兆半导体皆可快速提供完整的方案。

在不同的应用场合及产品中,方波驱动具有低切换损失以及不需要精确的转子反馈等优点。但随之而来的是转矩脉动较大,较适合在大能量输出场合使用。如载具、泵、工具机、工业用风扇及室外型产品。

弦波驱动无刷电机有运转平顺及无震动、无噪声的优势,较适合场合:吸尘器、空调、冰箱、洗衣机、洗碗机、家用风扇等家用产品。

家用风扇

无叶风扇、空气循环扇、一般家用落地扇、台扇、吊扇……追求的要点是室内空气循环,搭配空调增加效率、自然风、静音,已经跳开以往直吹的观念,追求的是更加舒适的生活。以往交流电机要达到相同的功能及效率需要付出额外的控制线路及电机材料、体积提升因此成本结构会大幅增加。直流无刷电机在具备效率及生产优势上,且具有控制单元很容易将智能功能加入来达到舒适家居生活的目的。


图3

为了避免通过的电流量不堪负荷,造成芯片的损坏,并有更好的保护功能,FCM82XX系列内置OCP(Over Current Protection)的设计回路。目的是让过电流的情况下,芯片还能够受到完整的保护。

过电流保护

FCM8201/02提供三阶段的过电流保护。

第一阶段称过载电流保护(Over-load Current Protection) ,保护动作的门槛电压(VOCP_OL)为1.4V。第二阶段为PWM每一周期的电流保护(Cycle-by-cycle Current Protection),保护动作的门槛电压(VOCP_CYC)为1.5V。最后阶段则是短路电流保护(Short Circuit Current Protection),保护动作的门槛电压(VOCP_SH)为2.5V。

图4

结论

在这个电力缺乏与环保意识抬头的年代,降低核能发电已是所有人共同努力的目标,对于高效能电机驱动的需求也逐渐被社会大众所接受,当然电机控制芯片的设计要求也越来越高。比如,BLDC或PMSM电机的无传感器、霍尔传感器以及高阶电机驱动器的无传感器与PFC都是未来的发展趋势。提供完整的设计方案与仿真软件,除了可以简化开发的时程,还能将电机驱动达到最优化的效率,才能有效的缩短产品上市的周期。

关键字:PWM法  直流无刷电机  正弦波 引用地址:先进节能直流无刷电机控制器

上一篇:步进电动机失步原因及危害
下一篇:企业数控设备DNC系统的实施与应用

推荐阅读最新更新时间:2024-05-02 22:56

具有跟踪滤波及开关电容滤波的正弦波振荡器
对于总线控制的振荡器而言,往往是产生一个低失真10Hz至10kHz正弦输出。一般的低成本函数发生器采用二极管成形技术把方波转变成正弦波。而二阶和三阶谐波分别的典型值为-35dBm和-25.5dBm。此电路产生正弦输出,在整个输出范围内典型的二阶和三阶谐波分别为 -76.1dBm和-74.2dBm。   这个电路由四部分组成。第一部分(也是电路的核心部分)由包含了U1A 的振荡器、一个二阶时钟滤波器拓扑(其带通滤波器设置振荡器的频率)和比较器U2A。带通滤波器只允许中心频率附近的频率通过,这设置了振荡器的频率,等式(1)给出了频率。滤波器 Q 值由等式(2)给出。   FO = FCLK / 100 (1)   Q =
[应用]
1KW纯正弦波逆变电源DC/AC/变压器控制芯片
这是一款保护功能齐全的正弦波 逆变 电源 模块,采用 DC/AC/工频 变压器 两级功率变换架构,其中全桥式DC/AC电路将24V(另有12V、48V)直流电压逆变成AC(24*直流电压利用率/1.414)V交流电,再由工频变压器将逆变之后的交流电变换成AC220V 50Hz的标准交流电,该模块的DC/AC部分采用HT1112芯片控制,模块采用输入输出隔离的方案. 一、a) 逆变 电源模块DC/AC部分 开关管立着的: b)工频变压器 工频变压器参数24V输入变比13/230 二、a) 输入额定电压:DC24V 注:此板也可用于输入电压DC12V、DC48V,输入额定电流均为50A,此仅以24V做测试说明。 b) 输入额
[电源管理]
1KW纯<font color='red'>正弦波</font>逆变电源DC/AC/变压器控制芯片
带AGC稳幅的正弦波振荡电路
采用了以JFET器件怍可变电阻,调整AGC回路的稳幅电路,其电路如附图所示。   工作原理该电路用很少的元件便搭成了一个闭环电路,实现了AGC自动稳幅功能。电路的振荡部分由IC1组成维恩电桥,其振荡频率由选频网络C3、C4、ZR1、ZR2决定。本电路的输出频率在5kHz左右,其频率变化要受温漂影响。电路的起振条件是IC2的放大倍数大于2,如累条件不成立,电路就会停振。IC2为积分放大器,和基准源D3、检波二极管D1、JFET管一起构成AGC闭环电路。   该电路虽然看似简单,但实际调试却有一定的难度。在维恩电桥的放大系数计算时,JFET的动态阻值也必须算进去,这一点往往被忽视。笔者在调试这个电路时,因为这一点大走弯路
[模拟电子]
带AGC稳幅的<font color='red'>正弦波</font>振荡电路
基于ATmega8 单片机控制的正弦波逆变电源
  在风电行业中,经常需要在野外对风机进行维修,这时必须为各类维修工具和仪器进行供电。因此,设计一种便携式。低功耗。智能化的正弦 逆变电源 来为这些设备供电是十分必要的,可大大提高维修风机的效率。   本文正是基于这种情况下而设计的一种基于单片机的智能化正弦 逆变电源 。   1正弦 逆变电源 的设计方案   本文所设计的逆变器是一种能够将DC 12 V直流电转换成220 V正弦交流电压,并可以提供给一般电器使用的便携式电源转换器。目前,低压小功率逆变电源已经被广泛应用于工业和民用领域。特别是在交通运输。野外测控作业。机电工程修理等无法直接使用市电之处,低压小功率逆变电源便成为必备的工具之一,它只需要具有一块功率足够的电池与它连接
[电源管理]
基于ATmega8 单片机控制的<font color='red'>正弦波</font>逆变电源
使用PLD的三相正弦波电压发生器的电路设计
  使用本设计实例中的电路可以开发并实现一台轻型、无噪声、廉价的三相、60Hz正弦波电压发生器。尽管其目标是用于测试电源控制器的电路,但它也可以用于需要具有120°相对相位差的三个正弦波的其它应用。IC1是一只22V10 PLD(可编程逻辑器件),它产生三个三相、60 Hz方波电压。IC1的内部寄存器Q0、Q1与Q2位使Q3位设定为领先Q4位 120°,并使Q5位设定为落后Q3位240°(图1)。将IC1的时钟频率设为748Hz,可在Q3、Q4和Q5产生60Hz输出。   IC1的三个方波输出电压(Q3、Q4和Q5)分别驱动IC2、IC3和IC4(图2),三只Maxim MAX294八阶低通开关电容滤波器产生三个2V正弦波(
[嵌入式]
使用PLD的三相<font color='red'>正弦波</font>电压发生器的电路设计
基于ATmega8 单片机控制的正弦波逆变电源
本文正是 基于 这种情况下而设计的一种 基于 单片机 的智能化正弦 逆变电源 。 1正弦 逆变电源 的设计方案 本文所设计的逆变器是一种能够将DC 12 V直流电转换成220 V正弦交流电压,并可以提供给一般电器使用的便携式电源转换器。目前,低压小功率逆变电源已经被广泛应用于工业和民用领域。特别是在交通运输。野外测控作业。机电工程修理等无法直接使用市电之处,低压小功率逆变电源便成为必备的工具之一,它只需要具有一块功率足够的电池与它连接,便能产生一般电器所需要的交流电压。由于低压小功率逆变电源所处的工作环境,都是在荒郊野外或环境恶劣。干扰多的地方,所以对它的设计要求就相对很高,因此它必须具备体积小。重量轻。成本低。可靠性高。抗
[电源管理]
基于ATmega8 单片机控制的<font color='red'>正弦波</font>逆变电源
一种基于单片机的正弦波输出逆变电源的设计
    低压小功率逆变电源已经被广泛应用于工业和民用领域。特别是新能源的开发利用,例如太阳能电池的普遍使用,需要一个逆变系统将太阳能电池输出的直流电压变换为220V、50Hz交流电压,以便于使用。本文给出了一种用单片机控制的正弦波输出逆变电源的设计,它以12V直流电源作为输入,输出220V、50Hz、0~150W的正弦波交流电,以满足大部分常规小电器的供电需求。该电源采用推挽升压和全桥逆变两级变换,前后级之间完全隔离。在控制电路上,前级推挽升压电路采用SG3525芯片控制,采样变压器绕组电压做闭环反馈;逆变部分采用单片机数字化SPWM控制方式,采样直流母线电压做电压前馈控制,同时采样电流做反馈控制;在保护上,具有输入过、欠压保护,
[电源管理]
一种基于单片机的<font color='red'>正弦波</font>输出逆变电源的设计
通过CAN总线控制VESC驱动直流无刷电机
最近在驱动一个直流无刷电机,驱动这一块不是我的研究重点,只是拿来用。但系统上用到CAN总线,找来找去找到了VESC这种神级物品,自然是拿一块来玩玩。 拿到我手上的VESC是国内某工作室的改版VESC V6.4(应部分网友需求,放出链接)。硬件方案是STM32F405+DRV8301+NVMFS5C628,带有CAN口、PPM口、USB口。 一个完全不知道参数的星型直流无刷电机,就这么1分钟就能转动。不得不说,本杰明大神的VESC Tool真是个神器,傻瓜式的一键调参。但是,本人的需求并不是通过VESC Tool让电机转速来,而是通过CAN口来向VESC下发指令,间接地控制直流无刷电机按需转动。 一开始把VESC源代码
[单片机]
通过CAN总线控制VESC驱动<font color='red'>直流无刷电机</font>
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved