四轮转向汽车电子控制技术

发布者:快乐的成长最新更新时间:2014-02-08 来源: eefocus关键字:4WS技术  传感器  ABS 手机看文章 扫描二维码
随时随地手机看文章

1.前言

随着现代道路交通系统和现代汽车技术的发展,人们对汽车的转向操纵性能和行驶稳定性的要求日益提高。作为改善汽车操纵性能最有效的一种主动底盘控制技术--四轮转向技术。于二十世纪80年代中期开始在汽车上得到应用,并伴随着现代汽车工业的发展而不断发展。汽车的四轮转向(Four-wheel steering-4WS)是指汽车在转向时。后轮可相对于车身主动转向,使汽车的四个车轮都能起转向作用。以改善汽车的转向机动性、操纵稳定性和行驶安全性。

随着对4WS这一领域研究的不断进展,出现了多种不同结构形式、不同控制方案的实用4WS系统。按照控制和驱动后轮转向机构的方式不同,4WS系统可分为机械式、液压式、电控机械式、电控液压式和电控电动式等几种类型。本文介绍的是电控电动式4WS系统。

2.电控电动式4WS系统的发展概况

从20世纪初,日本政府颁发第1个关于四轮转向的专利证书开始,对于汽车四轮转向技术的研究一直伴随着汽车工业的发展而进行着。1985年,日本的NISSAN在客车上应用了世界上第1例实用的4WS系统,开始了现代4WS系统的研究与开发。在技术相对成熟的4WS汽车中,大多数采用电控液压式4WS系统,主要用于前轮采用液压动力转向的4WS汽车中,这种4WS系统具有工作压力大、工作平稳可靠等优点。但由于液压动力系统在结构、系统布置、密封性、能耗、效率等方面的不足,尤其是在转向过程中存在着响应滞后的固有缺陷,使得电控液压式4WS系统在适应现代4WS汽车的转向灵敏性、准确性方面受到了束缚,不能满足汽车高速行驶稳定性的要求。1988年3月,日本铃木公司开发出电控电动式助力转向系统(EPS),首次装备在CERVO车上,有效地克服了液压动力转向系统的缺点。在EPS技术的基础上,电控电动式4WS系统应运而生。1992年,在日本本田序曲的汽车上采用了电控电动式4WS系统。1993年,在日产全新的LAUREL车系上也开始采用电控电动式的4WS系统。电控电动式4WS系统结构简单、布置容易、控制效果好。

随着电子技术的飞速发展,计算机技术在汽车中的广泛应用,电控电动式4WS将是4WS汽车的发展趋势。

3.电控四轮转向系统的基本组成和工作原理

3.1 电控四轮转向系统的基本组成

电控电动式4WS系统是指采用电子控制、电机助力的4WS系统,前、后轮转向系统之间没有任何机械连接、油管连接装置,结构上相互独立。如图1所示。



典型电控电动式4WS系统主要由前轮转向机构、传感器、电控单元(ECU)、步进电动机。减速器和后轮转向机构等组成。本文介绍的电控电动式4WS系统前轮仍采用传统的转向系统,后轮采用电子控制、电机驱动的转向系统。

3.2 电控四轮转向系统的工作原理

转向时,传感器将前轮转向的信号和汽车运动的信号送入ECU,ECU进行分析计算,向步进电动机输出驱动信号,步进电动机动作,通过后轮转向机构控制驱动后轮偏转。同时ECU进行实时监视汽车状况,计算目标转向角与后轮实际转向角之间的差值,来实时调整后轮的转角。这样可以根据汽车的实际运动状态,实现汽车的四轮转向。

系统可设有两种转向模式,既可进入4WS状态,也可保持传统的2WS状态,驾驶员可通过驾驶室内的转向模式开关进行选择。当4WS汽车在行驶过程中电子控制系统出现故障时,后轮自动回到中间位置,汽车自动进入前轮转向状态,保证汽车像普通前轮转向汽车一样安全地行驶。同时仪表板上的4WS指示灯亮,警告驾驶员,故障情况被存储在ECU中,以便于维修时检码。

上述的电控电动式4WS系统后轮转向装置属车速感应型,其工作特点是后轮偏转的方向和转角大小主要受车速高低的控制,同时也响应前轮转角、横摆角速度的变化。ECU根据设定的控制策略,通过程序控制,实现汽车的四轮转向。在低速行驶或者方向盘转角较大时,前、后轮实现逆相位转向,且后轮偏转角度随前轮转角增大而在一定范围内增大。这种转向方式可改善汽车低速时的操纵轻便性,减小汽车的转弯半径,提高汽车的机动灵活性。在中、高速行驶或方向盘转角较小时,前、后轮实现同相位转向。使汽车车身的横摆角速度大大减小,可减小汽车车身发生动态侧偏的倾向,提高汽车高速行驶的操纵稳定性。

4.4WS系统电控部分的组成

4.1 传感器

传感器的功用是检测汽车转向时的有关运动物理量,并转换成电信号,输入到ECU中,供ECU进行分析计算。

4.1.1 前、后轮转角传感器

前、后轮转角传感器分别安装在前、后轮转向机构靠近车轮的一侧,采用非接触型霍尔元件传感器,用来检测前、后车轮的瞬时偏转角。

4.1.2 车速传感器

车速传感器安装在车速里程表的转子附近,采用光电式车速传感器,将汽车前进速度检测出来,以脉冲信号的形式输出,送入四轮转向系统ECU,同时将电信号输入到自动变速器ECU.[page]

4.1.3 车身横摆角速度传感器

车身横摆角速度传感器安装在汽车质心处的车身上,采用压电射流角速度传感器,检测汽车转向行驶时的车身横摆角速度,以电信号的形式输入ECU,ECU输出控制信号,实时控制汽车的转向运动,保证汽车转向行驶时的动态稳定性。

4.2 电控单元(ECU)

ECU是4WS系统的核心,其功用是根据制定的控制方案,按照编制的程序对各种传感器输入信号进行分析、计算、处理,输出一定的控制信号指令,驱动步进电动机动作。其电控单元的控制框图如2图所示,4WS系统ECU主要由输入信号调理电路、微处理器、输出信号处理电路、电源电路等硬件部分和控制程序、软件平台等软件部分组成。为保证控制系统可靠地工作,电控单元还必须采取有效的抗干扰措施和故障自诊断处理措施。



4.3 步进电动机

电动机采用步进电动机,其功用是根据ECU的指令输出适宜的转矩和转角,驱动后轮转向机构,控制后轮的转向,是后轮转向系统中的驱动执行元件。步进电动机是一种数字控制电动机,将数字式电脉冲信号转换成角位移,控制性能好,非常适合于单片机控制。采用步进电动机的主要优点是:步进电动机的角位移与输入脉冲数严格成正比,随动性好,可与角度反馈环节组成高性能的闭环数控系统;动态响应快,易于实现起停、正反转及变速;具有自锁和保持转矩能力;结构简单,坚固耐用,抗干扰能力强。

4.4 减速机构

减速机构的功用是降低步进电动机转速,增大步进电动机传递给转向传动机构的转矩,常采用蜗轮蜗杆机构或行星齿轮机构。

4.5 后轮转向传动机构

不同的车型,后轮转向传动机构的结构形式也不一样,可采用传统的转向机构形式,也可根据汽车后悬结构和行驶转向要求,设计特定结构形式的后轮转向机构。

5.电控电动式4WS系统的特点分析

5.1 电控电动式4WS与普通2WS系统对比分析

电控电动式4WS汽车与普通的2WS汽车相比,电控电动式4WS汽车具有如下特点:

(1)转向操作的响应加快,准确性高。

(2)转向操作的轻便性和行驶稳定性提高。低速时,转弯半径小,转向操作的机动灵活性提高(如图3所示)。

(3)超车时,变换车道更容易,减小了汽车产生摆尾和侧滑的可能性。抗侧向干扰的稳定性效果好。

5.2 电控电动式4WS与电控液压式4WS系统对比分析

电控电动式4WS系统与电控液压式4WS系统相比,也具有显着的优势:

①采用步进电动机作为后轮转向系统的驱动执行元件,动态响应快,改善了瞬态转向灵敏度,有效地降低了电控液压式转向系统的转向滞后特性。

②步进电动机的角位移与输入脉冲数严格成正比,在转动过程中,无累积误差,随动性好,转向控制精度高,回正性好。

③系统刚性大,有较高的惯性力矩,抗外界干扰的能力强。结构紧凑,体积小,质量轻,装配布置方便。

④步进电动机由蓄电池供电,发动机动力消耗。没有液压系统装置,系统的调整和检测方便,装配自动化程度高,能缩短系统产品的生产和开发周期。

6.电控电动式4WS系统的技术展望目前在成型的4WS汽车中主要采用电控液压式4WS系统。虽然电控电动式4WS系统发展较晚,相应的技术还不够成熟,存在动力小、ECU复杂、成本高等不足之处,但随着现代电子技术、电机技术的飞速发展和应用,电控电动式4WS系统在技术上将不断完善,在转向控制性能、系统布置、节能等方面也将越来越显示其优越性,其应用前景广阔,必将取代电控液压式4WS系统,并成为4WS系统发展的主流。它的发展趋势有以下几点:

(1)针对4WS系统,进一步开发、设计高性能、高精度、高灵敏度的传感器,以便于正确地检测汽车的运动信号。

(2)将先进的控制理论与控制方法应用于4WS控制器的研究中,提高转向控制性能。

(3)改进步进电动机的结构和控制技术,消除步进电动机工作时存在的振荡、失步、振动、噪声等不足。

(4)研究、设计结构合理、布置方便的后轮转向传动机构,实现后轮的正确转向。

(5)进一步简化系统,减小系统结构的体积,控制生产成本。

(6)把4WS技术与其它主动安全技术(如4WD、ABS、ASR、ASC、DYC等)相结合,实现汽车主动底盘技术的综合控制,这是主动控制4WS系统研究的长期目标。

关键字:4WS技术  传感器  ABS 引用地址:四轮转向汽车电子控制技术

上一篇:IT大佬PK汽车巨头:车联网颠覆还是融合
下一篇:基于ADI DSPBF506F的汽车EPS方案

推荐阅读最新更新时间:2024-05-02 22:57

凸轮轴曲轴位置传感器信号波形组合测试-汽车示波器
曲轴位置传感器的输出信号,传进给发动机控制单元ECU,再由发动机控制单元进行计算,可以准确判断曲轴所处的位置。具体来说,ECU可以将曲轴位置传感器的信号区分为:1°信号、上止点信号和判缸信号。 发动机控制单元根据曲轴位置传感器提供的信号,确定曲轴所处的位置,保证了喷油正时与点火正时精确进行。同时,曲轴位置传感器中的1°信号也可提供发动机转速信号,发动机控制单元根据空气流量计信号和发动机转速信号确定基本喷油量。曲轴位置传感器可以用来检测发动机转速,因此又称为转速传感器。还可以检测活塞上止点位置,故也称为上止点传感器,包括检测用于控制点火的各缸上止点信号、用于控制顺序喷油的第一缸上止点信号。 凸轮轴位置传感器和曲轴位置传感器的
[测试测量]
凸轮轴曲轴位置<font color='red'>传感器</font>信号波形组合测试-汽车示波器
消费性应用驱动 气体传感器出货大爆发
    市场研究机构Yole Developpement最新报告指出,2014年气体传感器(Gas Sensor)在消费性电子应用市场的出货量仅约一百二十万颗,然而在未来智慧型手机与穿戴式装置大量采用下,可望于2018年突破一亿颗大关,并在2021年跃增至三亿五千万颗。
[手机便携]
艾迈斯半导体推出新型智能健康传感器 使移动设备具备医疗级心血管监控功能
全球领先的高性能 传感器 解决方案供应商艾迈斯半导体今日推出一款用于持续监控心血管健康状况的 光学传感器 AS7026,可对血压进行医疗级1精确测量。结合艾迈斯半导体的VivaVita配件设计,可为需要缩短产品上市时间的客户提供交钥匙解决方案,为iOS和Android?移动操作系统创建功能丰富的移动应用程序。 将AS7026嵌入健康监测腕带或智能手表等消费设备,可持续进行心率、心率变异性、血压和心电图(ECG)测量。AS7026先进的光学半导体技术与复杂的算法相结合,使得可穿戴设备的测量精度达到前所未有的水平,根据IEEE 1708-2014行业标准,AS7026采用的血压测量算法精度经测试为医疗级1(B级)。 该传感器的高精
[医疗电子]
艾迈斯半导体推出新型智能健康<font color='red'>传感器</font> 使移动设备具备医疗级心血管监控功能
3D、多波长,医用图像传感器技术接连亮相
       医用图像传感器(成像仪)的需求以9%的年增长率稳定增长,到2017年市场规模将超过1亿美元。出现高增长的原因是发达国家的老龄化推高了医疗需求以及新兴地区越来越富裕。医用图像传感器的出货量如果一直保持23%的增长率,到2017年将达到500万个。这些出货量将由面向内窥镜领域以及胶囊内镜和一次性内窥镜等新领域的低成本图像传感器贡献。  在X光机市场上,图像传感器将由非晶硅转向CMOS          在医疗和生物用图像传感器市场上,X光机使用的大尺寸传感器占了大部分份额,在该领域的收益中占到90%。         非晶硅技术适合以低辐射剂量进行大面积体表照射。但由于像素尺寸最小为100μm左右,因此分辨率不足以
[医疗电子]
多路振弦传感器的扫频激振技术
振弦式传感器是目前应力、应变测量中较为先进的传感器之一。振弦式传感器的输出是频率信号,信号处理过程中无须进行A/D及D/A转换,因此,抗干扰能力强,信号传输距离远,而且对传输电缆要求低。另外,振弦式传感器还具有结构简单、精度高、寿命长等特点, 因而一直受到工程界的关注。在工程应用中,振弦式传感器可以埋入或焊接在被测试件上,基本不存在粘贴剂老化和脱落问题,具有很好的稳定性和重复性。对于微小的被测力变化可产生较大的频率变化,具有很高的灵敏度。 随着现代电子读数仪技术、材料及生产工艺的发展,振弦式仪器技术也不断得以完善,成为新一代工程仪器的潮流,被广泛应用在建筑物基础、大坝、桥梁、公路、核电站的水泥外壳等需要对受力、位移、微裂缝的
[工业控制]
多路振弦<font color='red'>传感器</font>的扫频激振<font color='red'>技术</font>
电梯控制系统中静磁栅位移传感器的应用2
4 PLC控制静磁栅位移传感器实现电梯平层控制   要使电梯到达平层区域后能自动平层,必须有一套自动控制系统,即电梯的自动控制装置。该装置的控制部分是静磁栅位移传感器,以30层电梯为例,安装图如下图所示。         上图所示轿厢处于地下层上面的第一层,静磁栅源安装于电梯井道和室外层平行,每层一个,静磁栅尺安装于轿厢上,长度为1.2米,地下层安装两个静磁栅源,用于检测轿厢是否到底位和运动方向。   由于电梯的运行是根据楼层和轿厢的呼叫信号、行程信号进行控制,而楼层和轿厢的呼叫是随机的,因此,系统控制采用随机逻辑控制。即在以顺序逻辑控制实现电梯的基本控制要求的基础上,根据随机的输入信号,以及电梯的相应
[模拟电子]
电梯控制系统中静磁栅位移<font color='red'>传感器</font>的应用2
意法半导体传感器模块增强智能手机界面性能和拍照防抖功
6轴陀螺仪 / 加速度计模块可同步处理手势感测和防抖功能;实现业界最低的功耗与最小的封装尺寸 中国,2015年9月28日 横跨多重电子应用领域、全球领先的半导体供应商、MEMS产品制造商,世界最大的消费电子和便携MEMS供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM),推出世界上最先进的6轴运动传感器,全面支持智能手机、平板电脑和数码相机的光学图像稳定系统(image stabilization)。新产品LSM6DS3H是意法半导体iNEMO 系列惯性运动传感器的最新成员,在一个系统级封装解决方案内整合一颗3轴陀螺仪、一颗3轴加速度计以及超低功耗处理电路,实现业界最低功耗和最小封
[物联网]
传感器与变送器的区别及联系
能够受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置的总称,通常由敏感元件和转换元件组成。当 传感器 的输出为规定的标准信号时,则称为变送器。 变送器的概念是将非标准电信号转换为标准电信号的仪器,传感器则是将物理信号转换为电信号的器件,过去常讲物理信号,现在其他信号也有了。一次仪表指现场测量仪表或基地 控制 表,二次仪表指利用一次表信号完成其他功能:诸如 控制 ,显示等功能的仪表。 传感器和变送器本是热工仪表的概念。 传感器是把非电物理量如温度、压力、液位、物料、气体特性等转换成电信号或把物理量如压力、液位等直接送到变送器。变送器则是把传感器采集到的微弱的电信号放大以便转送或启动控制元件。或将传感器输入的非电量转
[传感器]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved