TPMS外置编码存储器式轮胎定位技术的电路实现

发布者:Enchanted2023最新更新时间:2014-11-10 来源: eefocus关键字:TPMS  ABS  EBD  ESP 手机看文章 扫描二维码
随时随地手机看文章
TPMS技术及轮胎定位原理

        汽车轮胎压力监测系统(TPMS)主要用于在汽车行驶时,适时地对轮胎气压进行自动监测,对轮胎漏气造成低胎压和高温高胎压爆胎进行预警,确保行车安全。 

        TPMS中的轮胎定位是指系统接受轮胎发射模块发出的信号,并识别、判定出是哪个轮胎的过程。

轮胎重新定位问题的提出 

        汽车因为前后左右车轮负荷不均、前轮负责转向和前后轴悬挂角度不同等原因,通常各轮胎磨损程度和位置也不同。为了延长轮胎的使用寿命,达到四个轮胎同步均匀磨损的效果,这就需要定期进行轮胎换位。 

        在轮胎换位的过程中,相应的发射检测模块也会换位。这就导致了原先存储在接收显示模块MCU中的ID码与轮胎对应识别关系信息不再适用于换胎后的轮胎位置,即显示屏上的轮胎压力和温度信息和轮胎的对应关系产生错误。 

        如果调换新的轮胎或者某一轮胎的发射检测模块损坏,用户需要更换该模块时。新模块的ID码与损坏的发射检测模块不同。原先存储在接收显示模块MCU中的ID码与轮胎对应身份识别关系信息不再适用于更换模块后的ID码,接收显示模块会将更换的模块的信息丢弃,显示屏上将无法显示新模块发出的压力和温度信息。 

        这样在轮胎换位或调换轮胎时就存在一个轮胎重新定位的问题。

现有TPMS采用的轮胎定位技术 

        目前,解决TPMS轮胎换位和调换轮胎时的重新定位问题常见的有以下四种方式。 

        1 定编码式 

        定编码方式中,接收显示模块MCU中的ID码与轮胎对应定位关系信息在出厂时是固化的,在使用中不可更改。这种方式的不足之处是:安装错位会导致定位混乱;发射模块损坏后,用户必须向原厂商购买与损坏模块编码一致的模块;轮胎换位时发射检测模块必须按照其标记位置重新安装一次。 

        2 界面输入式 

        界面输入式定位技术是将每个发射模块的识别ID码打印在外包装或产品上,但当轮胎换位或发射模块损坏后,就必须将识别ID码用按键输入到接收端进行重新定位。界面输入式的识别ID码长为16或32位,输入流程复杂,容易出现码组输入错误问题。此外,这些按键在本来就仪表众多的车上显得十分突兀。 

        3 低频唤醒式 

        低频唤醒式定位技术是利用低频(LF)信号(125kHz)的近场效应。在该方案中,在每个轮胎附近有个LF天线;TPMS可以通过对应轮胎附近的LF天线发出LF信号,单独触发对应轮胎的发射检测模块,然后由被触发的发射检测模块将身份识别码通过RF发射出来,接收模块通过RF信号得到相应ID,从而自动确定轮胎位置。该定位方式的不足之处是:需要4个LF天线安装在对应的轮胎附近,安装及布线工作量大;LF信号可能会误触发相邻的发射检测模块;汽车上电磁环境复杂,存在各种干扰,会对低频信号造成干扰,导致身份识别失效。

图1 外围编码存储器式定位技术原理图

        4 天线接收近发射场式 

        该定位技术接收显示模块的接收天线有4个,分别延伸到每个轮胎20~30cm的近场内,接收天线由数控微波开关控制。当需接收某个轮胎发射检测模块的信息时,只有靠该轮胎接收天线的微波开关是导通的,其他都处于关闭状态,接收显示器上显示该轮胎的气压和温度。该定位技术的不足之处是:天线布线复杂,微波开关成本高,目前技术水平下RF开关隔离度不够,有串码(即接收到了别的轮胎的信息)的可能;汽车上的电磁干扰可能导致定位失效;射频开关的导通时序是按一定规则的,而4个轮胎发射检测模块的发射是随机的,故会存在某个轮胎附近的射频开关导通时,该轮胎的发射检测模块正好没有发射信号,导致漏帧。

外置编码存储器式轮胎定位技术 

        外置编码存储器轮胎定位技术是一种新型的TPMS轮胎定位技术。如图1所示,采用外置编码存储器的TPMS同样由发射检测模块和接收显示模块组成,其特征在于,在接收显示模块接插有插入式编码存储器,每个发射检测模块均有一个固定的ID码,与对应编码存储器的ID码一致。 

        轮胎换位或者更换时,只需调换或更换插入式编码存储器。外置编码存储器式轮胎定位技术通过调整显示模块编码存储器中的ID码与每个发射检测模块中的ID码的对应关系,将重新识别身份的问题转换成ID码的换位设置问题,是简单、有效的解决方案。其插头插入的操作方式简单可靠。通过I/O读入插入式编码存储器电路中的编码,避免了用无线方式读入ID编码,从根本上解决了干扰的问题。

外置编码存储器的电路设计 

        图2是TPMS系统的电路实现框图,本文主要对外置插入式编码存储器电路进行阐述,不涉及发射机和显示器本身的电路。外置编码存储器电路的设计包括两部分,一是和主机的连接部分,即连接电路的设计,二是存储器的设计。

图2 TPMS系统电路框图

        1 连接电路的设计 

        连接电路即将编码存储器电路和主控制器电路连接在一起的接口。由于是在汽车上应用,要考虑接口的可靠性,有如下的几种设计。 [page]

        (1)插头和插座

图3 移位存储电路

图4 二极管存储矩阵

        通过插头和插座的连接接口电路,这种设计的好处是可以使用市场上通用的插座;缺点是尺寸比较大。 

        (2)卡座 

        在PCB上做出镀金接头,即金手指。将PCB通过金手指直接插在插座上,通过金手指和插座连接。这种设计简单,成本低,但是对于振动的抵抗力差,可靠性较低。 

        (3)SIM卡或IC形式 

        将存储电路做在SIM卡中,通过SIM卡或IC卡接口读出存储器中的编码;接口也做在SIM卡中,采用SIM卡通用的接口设计。优点是可靠性高、体积小,缺点是成本也高。 

        在方案实施的过程中,在连接器电路上选择了一种带卡扣锁紧的插头以保证了可靠性。 

        2 编码存储器的设计 

        存储器的形式很多,可分为移位存储器和矩阵存储器两种。目前可以采用分离元件做,也可以采用市面上的成熟电路来制作。汽车电子应用的电路对电磁兼容的要求很高,以下列举几个具体电路。 

        (1)移位存储器 

        如图3所示,写入数据时,每次时钟信号到来,将D1数据移入寄存器,同时所有数据右移一位。读出数据时,每次时钟信号到来,所有数据左移一位,读出D1端口上的值,优点是占用I/O端口少,缺点是读取速度较慢,而且需要时钟的同步,实际上是串行口。 

        (2)矩阵存储器 

        可以用开关、二极管、MOS管、三极管或PLA实现,优点是读取速度快,缺点是占用I/O口多,实际上是并行口。 

        ● 二极管存储矩阵 

        如图4所示,二极管存储矩阵实际上是一个二极管编码器,当PTB0~PTB3上的某一根线上是低电平,其余的线是高电平时;可以读出PTB0~PTB3上的值;PTB0~PTB3上有上拉电阻,接点上连接有二极管的为逻辑“0”;没接的为逻辑“1”。当PTB0~PTB3上的4根线依次为低电平时,PTB0~PTB3就可以读出4个4位编码,一起构成一个16位的编码。 

        ● MOS管和三极管存储矩阵

图5 管存储矩阵

        如图5所示,MOS管和三极管存储矩阵原理上和二极管存储矩阵是一致的,只是将二极管换成了MOS管和三极管。 

        在存储器电路的选择上,为了避免在汽车的电磁环境下对时钟的影响,放弃了移位存储器,而选择了矩阵存储器,虽然占用的I/O口的数目较多,但是可靠性高而且读取的速度快。选用的方案有两种,一是耐高低温的并行口数据存储芯片,二是采用二极管的矩阵存储器电路,优点是电路简单可靠且成本低。

外置编码存储器轮胎定位技术的实现 

        每一个发射检测模块对应一个插入式外置编码存储器(ID编码插头),编码插头中的编码电路存储的ID码和对应的发射检测模块中固化在存储器中的ID码相同。 

        显示模块上每个轮胎数据显示区域旁有ID识别码编码插座,当有插入式编码存储器插入ID识别码编码插座时,接收机通过定位ID码插座读出插入式编码存储器中的ID码,并将该ID码和对应轮胎数据显示区域建立对应定位关系。 

        在每次开机时,接收显示模块读取插在各插座上的插入式外置编码存储器(ID编码插头)中的ID码,然后重新设置存储在接收显示模块MCU中的ID码与轮胎对应定位关系信息,并保存起来。发射模块发射来的对应信息后,接收模块读取其中的ID码后,根据在接收显示模块MCU中的ID码与轮胎对应定位关系信息来判断是哪一个轮胎发出的信号,并将压力和温度信息显示在对应区域。 

        用户在使用时,如需轮胎换位,将对应的插入式编码存储器换位便可。当下一次开机后,接收显示模块重新设置存储在其MCU中的ID码与轮胎对应定位关系信息,保证将信息显示在正确的位置。 

        若用户发现某一发射机损坏,只需到市场上购买一只发射检测模块套件(插入式外置编码存储器作为附件)。因为发射机中随附一只插入式外置编码存储器,只需将损坏的发射模块的插入式外置编码存储器拔下,重新插上随机新的插入式编码存储器即可。当下一次开机后,接收显示模块重新设置存储在其MCU中的ID码与轮胎对应定位关系信息,保证将新发射检测模块发出的信号显示在正确的位置。
关键字:TPMS  ABS  EBD  ESP 引用地址:TPMS外置编码存储器式轮胎定位技术的电路实现

上一篇:智能传感器与现代汽车电子
下一篇:当前汽车信息娱乐系统的软件技术需求分析

推荐阅读最新更新时间:2024-05-02 23:17

NPXI智能传感器的TPMS系统设计
引言 据调查,高速公路发生的严重交通事故,有很大比例是由汽车轮胎欠压引起的。为防止此类事故发生,美国国会通过TREAD法案,强制要求汽车安装轮胎压力监测系统(Tire Pressure Monitoring System,TPMS),得到世界各国积极响应。因此,在未来汽车上加装轮胎压力监测系统,将和ABS、安全气囊一样,成为必然的发展趋势。 TPMS系统分为直接式TPMS和间接式TPMS两种。其中间接式TPMS是通过汽车ABS系统的轮速 传感器 来比较车轮之间的转速差别,以达到监视胎压的目的,其精度较低。直接式TPMS工作原理是利用安装在每一个轮胎里的 压力传感器 和 温度传感器 来直接测量轮胎的压力和温度,并对各轮胎气压进
[嵌入式]
车用TPMS专用传感器模块技术剖析
TPMS 是汽车轮胎压力监视系统 “Tire Pressure Monitoring System”的英文缩写,主要用于在汽车行驶时实时的对轮胎气压进行自动监测,对轮胎漏气和低气压进行报警,以保障行车安全,是驾车者、乘车人的生命安全保障预警系统。    在欧美等发达国家由于TPMS 已是汽车的标配产品,因而TPMS 无论在产品品种还是在生产产量方面都在急速增长,其所用MEMS 芯片和IC 芯片的技术发展进步很快,TPMS 最终产品技术也因此而得到迅速发展。    TPMS 的轮胎压力监测模块由五个部分组成:(1)具有压力、温度、加速度、电压检测和后信号处理ASIC 芯片组合的智能传感器SoC;(2)4-8 位单片机(MCU);(3
[工业控制]
车用<font color='red'>TPMS</font>专用传感器模块技术剖析
基于ZigBee技术的TPMS设计
汽车轮胎压力监视系统(TPMS)是一种能对汽车轮胎气压进行自动检测,并对胎压异常情况进行报警的预警系统。本文结合ZigBee技术的低成本、低功耗、设备地址唯一等优点,将轮胎内部安装的压力、温度传感器组成一个微型ZigBee网络。 监测网络总体设计 ZigBee 技术是新兴的一种近距离、低成本、低功耗、低数据速率的无线通信技术。它基于IEEE 802.15.4协议标准,主要工作在免授权的2.4GHz频段,数据速率为20~250Kb/s,最大传输范围在10~75m。ZigBee网络中定义了两种物理设备类型:全功能设备 (FFD)和精简功能设备 (RFD)。其中,FFD支持任何拓扑结构,可以充当网络协调器,能和任何设备通信;RFD不能完成
[嵌入式]
看看ESP有多重要,开车时能保你条命
湿滑的路面和突发的避让,往往导致车辆翻到沟里或撞上障碍物,并且伴随严重的人身伤亡。 25年前,一项开创性的发明带来了补救性的解决办法——博世和戴姆勒-奔驰于1995年首次在S级车辆上应用了电子车身稳定程序ESP(电子车身稳定系统)。1997年之后,ESP逐步成为各大量产。 日前,博世博世事故研究人员公布估算数据显示,仅在欧盟国家,ESP在过去的25年终挽救了大约15000人的生命,并防止了近50万起人身伤害事故。因此,ESP也被视为与安全带和安全气囊并称为车辆上最重要的救生装置。 “电子车身稳定系统的发明是博世成就未来交通‘零事故’愿景的一个里程碑。” 博世集团董事会成员Harald Kroeger表示,“ESP很好地
[汽车电子]
看看<font color='red'>ESP</font>有多重要,开车时能保你条命
LabVIEW在汽车ABS制动管道动态特性测试中的应用
1 引言 LabVIEW是实验室虚拟仪器工程工作平台(Laboratory Virtual Instrument Engineering Workbench)的缩写,是美国国家仪器公司(National Instruments)在1986年推出的一种革命性的图形编程语言-G语言(Graphical Programming Language),开创了虚拟仪控的新纪元 。 LabVIEW的目标是简化程序的开发工作,让工程师和科学家能够充分利用PC机快速简洁的完成自己的工作。自1986年LabVIEW诞生至今,经过十多年的发展,LabVIEW的功能日渐丰富和强大,可以广泛应用于自动测量系统、工业过程自动化、实时监控、实验室系统仿真等各
[测试测量]
罗杰斯XtremeSpeed™ RO1200™ 粘结片,专为高速电路应用设计
罗杰斯公司于2020年3月19日推出XtremeSpeed™ RO1200™粘结片,该材料是一款陶瓷填充、无玻璃布增强的超低损耗PTFE粘结片,专为高速电路应用设计。XtremeSpeed RO1200粘结片具有极低损耗的介质与最光滑的压延铜箔相结合,能够完美满足56 Gbps和112 Gbps系统的性能需求。RO1200层压板及粘结片均是行业内性能领先,居于市场领导地位的产品。 RO1200粘结片可提供所有设计厚度的、与层压板相匹配的介电常数值,与XtremeSpeed RO1200层压板充分互补。该粘结片在10 GHz时的介电常数为2.99,损耗因子仅为0.0012。提供多种厚度可选,包括2.5mil、3.0mil、4.0
[模拟电子]
罗杰斯Xtrem<font color='red'>eSp</font>eed™ RO1200™ 粘结片,专为高速电路应用设计
51单片机通过WIFI模块ESP8266控制LED灯
一、系统方案 手机APP通过ESP8266 WIFI模块与51单片机通信控制LED灯的开关。下位机由单片机、ESP8266模块和LED灯组成,上位机由Android手机APP承担。我们在APP上发送LED灯的开关控制指令,ESP8266将收到的数据发送给单片机,从而实现对LED灯进行开关控制。 设计好的实物是这个样子: 二、硬件设计 ESP8266模块作为一个透传模块使用,RXD、TXD分别连接51单片机的TXD和RXD,VCC和CH_PD管脚接3.3V电压,GND接地,只需要连接这些管脚,ESP8266模块就可以正常工作了。在单片机P2口上连接了三个5mm的LED灯,分别是红黄蓝三种颜色,我们的目的是通过手机A
[单片机]
51单片机通过WIFI模块<font color='red'>ESP</font>8266控制LED灯
特斯拉的无线网络之TPMS
在整理线束架构的时候,一个很让人感兴趣的方向,就是汽车里面的无线网络按照什么样的结构来发展——像TPMS、无线钥匙、手机钥匙和是否会出现更多的车内无线通信(无线BMS),我觉得从这个架构来分析比较合适。 特斯拉的迭代特别快:2020年初Model Y上把大陆的TPMS传感器切换以后,在2020年年底也把Model 3的产品也进行了切换。而供应商也出现了代工,我想第一个讨论的是整个特斯拉无线单元的演变和TPMS的演变。 ▲图1.特斯拉的主要两台车的系统迭代 Part 1、特斯拉的无线网络和天线 目前特斯拉要进行认证的主要包括以下的几个部件,涵盖安防系统、钥匙、胎压传感器和无线充电这么几个单元。 ▲图2.特
[汽车电子]
特斯拉的无线网络之<font color='red'>TPMS</font>
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved