功率器件在混动汽车(HEV)中的应用

发布者:huijiazi5210最新更新时间:2014-12-12 来源: eefocus关键字:功率器件  混动汽车  HEV 手机看文章 扫描二维码
随时随地手机看文章
  混合动力汽车(HEV)市场的增长在很大程度上取决于每加仑/英里这一能耗指标及追加投入的每个硬币所带来的好处以及混合系统现场的可靠性。消费者将混合汽车与标准汽车进行比较,并期待在整体更低拥有成本的前提下起码具有同样的性能和可靠性。混合汽车增加的成本必须在拥有期间通过节省燃料和维护成本得到回报。

  用在HEV中逆变器和dc-dc转换器中的功率模块和其内的功率器件是主要的性能、可靠性和成本驱动器。效率、功率密度和特定功率是一些关键性能指标。最重要的可靠性规范是热循环和功率循环。

  混合动力汽车的分类

  在混合汽车驱动系统中,需将一或几个电机与燃烧引擎一起使用。可根据混合程度和系统架构对混合汽车进行分类。可被分为微(micro)级、轻度(mild)级和完全(full)级的混合程度决定电机执行的功能。该分类还决定所需的功率级及优选的系统架构。

  串行、并行和功率分配是最常用的架构。对一款特定车辆来说,混合程度和系统架构的选择主要取决于所需的功能、车辆大小、行驶年限及设定的燃油经济性指标。每个混合系统的功率电子内容各不一样,它取决于功能、功率要求和架构。

  当仅需要启动-停止功能时(例如旅行车场合),用一个集成起动器/交流发电机系统代替了起动器和交流发电机的并行微混合的方法就很通用。在这些系统中,电压和功率等级相对较低,其油耗的改进在10%左右。

  除启动-停止功能外,当需要时,一个轻度混合系统可提升/辅助引擎功率,另外,它还从再生制动中获取能量,从而可将油耗的改进提升到15%左右。增加的功能需要更高的能耗,所以要采用高压器件(80V 到600V)。

  若以完全电子模式运行车辆,则需要一个具有高压和大电流能力的完全混合系统。根据应用,完全混合系统可具有串行、并行和功率分配架构,它可将油耗降低35%。

  HEV系统中功率电子面临的挑战

  HEV系统中的功率电子需高效地将能量从dc转至ac(电池到电机)、从ac转至dc(发电机到电池)及从dc 到dc(对升压转换器来说,是从低的电池电压到高的逆变器输入电压;对降压转换器来说是从高压电池到低压电池)。因在该能量转换中,要对高压和大电流进行开关,所以需采用具有最低损耗的功率器件技术。对较低的系统电压和电流来说,MOSFET技术比IGBT有更好的功率密度,它们用在微混合应用中。对轻度混合应用来说,当系统电压高于120V时,IGBT是首选器件。对全混合应用来说,600V到1200V的IGBT是使用的唯一器件。

  一般来说,传统的NPT IGBT在导通损耗和开关损耗特性间有一个平衡。若导通损耗降低则开关损耗增加。英飞凌的沟道FieldStop IGBT及配套的EmCon二极管技术与传统器件相比,在增加芯片电流密度的同时减小了导通和开关损耗。通过采用一个场截止(fieldstop)层来得到更低损耗,该层减小了器件厚度并降低了通过器件的压降。图1显示了平面和沟道器件所用不同IGBT技术的截面层。另外,Field-Stop器件可连续工作在150 °C(最高175 °C)的结温度,该特性强化了芯片电流密度并使采用更高的冷却温度变得更容易。

  嵌放在一个便利封装内的功率模块可承受极端温度环境、震动及其它恶劣环境条件。除器件工作引起的温度变化外,环境温度变异及车内产生的振动带来可靠性挑战。在混合汽车应用中功率模块预期的使用寿命是15年/15万英里,所以在设计该模块时,要使其能具有期望的可靠性。例如,在某些情况,更高的器件性能会对模块的稳定性产生不良影响。从器件技术的角度讲,某些功率器件可工作于高的结温度,但该更高的结温度会在线绑定接口产生更高温度,从而降低模块功率周期的稳定性。因此,需建立一整套全面的器件和封装技术规范来优化性能、可靠性和成本。

混合车用功率半导体模块

  应用需要功率模块具有高电流密度,这也就意味着每单位电流容量具有更小的体积。器件越小,包纳其于其内的底层也就越小,结果就得到一个模块虽小但功率密度更高的模块。图2显示的是英飞凌预期的1200V器件体积的减小情况。显然,与NPT器件相比,FieldStop器件显著缩小了体积。

  封装设计和互连技术对模块的寄生感应产生很大影响,它们也可被用来改进功率密度。另外,选择的材料也会对性能和可靠性产生影响。例如,氮化硅底层的成本比氧化铝底层的成本高很多,但前者的热性能明显好于后者。同样,昂贵的铝硅碳化物基板也比便宜的铜基板具有高得多的热循环可靠性。[page]

  当为HEV设计功率模块时,需在设计开始就明确关键的障碍。需采用恰当的器件技术、底层布局和封装技术以满足性能、可靠性和成本目标。表1显示了三种模块在性能和可靠性方面的对比,它们分别是:用于工业可变速驱动的标准半桥62mm模块、用于轻度混合的六单元(six-pack)HybridPACK1模块(图3)和用于全混合的六单元(six-pack)HybridPACK2模块。

 

  在全部三种模块内,都采用了相同的600V沟道FieldStop器件技术,但采用的封装技术不同。62mm和 HybridPACK1模块实现的器件电流是400A(每开关各有两个200A IGBT和两个200A二极管),而HybridPACK2模块的电流是800A(每开关各有四个200A IGBT和四个200A二极管)。用于62 mm、HybridPACK1和HybridPACK2模块功率和信号热连接的封装技术分别采用的是:焊接、线绑定和超声波焊接。通过布局改良及采用线绑定的功率和信号热连接,HybridPACK1模块的功率密度已比62mm模块提升了50%。虽然寄生感应增加了50%,但对600V器件来说,这并非一个主要问题,因为在轻度混合应用中最坏的系统电压情况在200V以下。

通过创新的超声波焊接工艺和改进的布局,HybridPACK2模块的功率密度增加了120%以上。多个线连接及为了移动绑定工具分配的空间使线绑定热连接在封装内很占空间;超声波焊接则省去了该空间且速度也比线绑定工艺快。另外,线绑定的电流输送能力有限。因厚的铜终端在超声波焊接时与底层融固在一起,所以,超声波焊接的电流载运能力不受限制。更紧凑的封装还显著降低了HybridPACK2封装的自感。对全混合应用来说,因系统电压会高于400V,且大电流会产生很大的dI/dt,所以低的寄生感应很重要。

  模块的热阻抗主要取决于每开关所占的芯片面积、模块的材料堆叠及底层布局。材料堆叠特性直接影响模块的热阻抗,而布局则增加了交叉传导部分。在62mm和HybridPACK1模块中,采用了平的铜基层,而HybridPACK2则采用集成的针翅管(pin-finned)铜基层。对带有平基层的模块来说,需将导热脂和散热层的热阻抗加起来以得到“从结到环境”的热阻抗。借助拿掉了导热脂层并直接将底层与针翅管基板焊接在一起,从而显著改善了HybridPACK2模块的热阻抗表现。

  模块内临近材料的热扩展不匹配将使连接部位产生压力形变并最终导致故障。最大的压力产生在铜基板上为与底层焊接在一起所涂覆的焊料点上。为加强可靠性,模块制造商传统上采用氮化铝底层与铝硅碳化物基板的组合,此举显著增加了成本。为替代昂贵的铝硅碳化物,英飞凌开发出采用铜基板和改进的氧化铝底层的HybridPACK1和HybridPACK2模块。这种材料组合可满足可靠性目标要求,但成本却降低了很多。汽车的可靠性目标是从-40 °C到125 °C的1000次循环。

  结论

  功率模块的性能、可靠性和成本是HEV市场增长的主要驱动器。为降低成本,需降低功率模块内器件的功率密度和结温度。英飞凌的沟道FieldStop IGBT和EmCon就是在增加结温度的同时可降低导通和开关损耗的这样一类器件。通过采用高效的功率器件和超声波焊接技术可显著改进模块的功率密度;同样,采用集成的针翅管基层可改进热性能。改进的氧化铝底层和铜基板方法能以低成本为HybridPACK模块提供最优异的可靠性。对全混合应用来说,HybridPACK2是一款优异的模块,它提供了高功率密度、低自感、低热阻及最佳可靠性和最低成本。

关键字:功率器件  混动汽车  HEV 引用地址:功率器件在混动汽车(HEV)中的应用

上一篇:能量互联网电动汽车打造中国版“特斯拉”
下一篇:汽车运行状况图像监测系统的设计

推荐阅读最新更新时间:2024-05-02 23:22

比亚迪半导体新款功率器件驱动芯片自主研发告成
12月14日,比亚迪半导体官方宣布,成功自主研发并量产1200V功率器件驱动芯片——BF1181,今年12月实现向各大厂商批量供货。 据介绍,BF1181是一款磁隔离单通道栅极驱动芯片,用于驱动1200V功率器件,同时具有优异的动态性能和工作稳定性,并集成了多种功能,如故障报警,有源密勒钳位,主次级欠压保护等。 Source:比亚迪半导体 BF1181还集成了模拟电平检测功能,可用于实现温度或电压的检测,并提高芯片的通用性,进一步简化系统设计,如尺寸与成本等。 为了安全可靠地使用功率器件,并实现将MCU的低压驱动信号实时控制功率器件的开启与关断,功率器件驱动芯片必不可少,它将驱动功能和各种保护功能集成于一体。
[汽车电子]
比亚迪半导体新款<font color='red'>功率器件</font>驱动芯片自主研发告成
中国乘用车汽车市场的渗透情况
在整理 7 月零售数据的时候,我觉得有必要把混动单独拉出来讲,如下图所示,长期来看混动(不管是 48V 还是基于 200~300V 的系统)可能都会存在很长的时间。这个现象其实在欧洲也能观察到,早布局混动对于燃油车往 2025 和 2030 年的演进是非常有帮助的。如下图所示,HEV 目前 7 月份销售了 4.97 万台,市场份额为 2.97%;PHEV1.72 万台,市场份额为 1.03%,纯电动 7.32 万台,市场份额 4.37%;甲醇和天然气还在很低的范畴。 图 1 7 月份替代柴汽油车零售的情况 01、HEV 的市场概览 混动目前完全是日系市场,随着美系和韩系接连暂时性退却,目前丰田占了 63%+的市场,本田占
[嵌入式]
中国乘用车<font color='red'>混</font><font color='red'>动</font><font color='red'>汽车</font>市场的渗透情况
TÜV测试证实:大陆集团MK C1制动系统可减少汽车每百公里
如今,全球各国汽车二氧化碳(CO2)排放法规日趋严格:欧盟规定,从2021年起,汽车制造商新注册车辆的每公里平均二氧化碳排放量不得超过95克。如若超标,制造商需要为每克二氧化碳支付95欧元;在美国,至2020年,车辆每公里二氧化碳排放量不得超过121克;在中国,这一数字是117克/公里,在日本为105克/公里。在此背景下,降低汽车二氧化碳排放量变得至关重要。要达到这一目标,除了动力系统之外,包括制动系统在内的其他车辆系统也需要共同发挥作用。在2019年上海车展(2019年4月16日至25日)上,科技公司大陆集团将发布其最新TÜV测试结果。大陆集团底盘及安全事业群动态控制系统事业部负责人Matthias Matic表示,“与传统的非
[汽车电子]
TÜV测试证实:大陆集团MK C1制动系统可减少<font color='red'>混</font><font color='red'>动</font><font color='red'>汽车</font>每百公里
Intersil推出混合燃料与电动车(HEV/EV)锂离子电池管理控制解决方案
      Intersil公司(纳斯达克全球精选市场交易代码:ISIL)今天宣布,推出HEV/EV系统解决方案,该解决方案配备了汽车级锂离子电池管理系统和安全监视器。依托Intersil为便携式电子产品市场提供卓越的电池管理设备的悠久历史,汽车级 (AEC-Q100) ISL78600 多电池解决方案经过特别设计和测试,能够满足混合动力、插电式混合动力 (PHEV) 和电动车市场对安全、可靠性和性能的要求。       为了满足汽车市场严格的安全要求,Intersil的HEV/EV解决方案保证了客户遵从ISO26262 (ASIL) 规范,防止电池组出现故障。该解决方案还对所有主要内部功能提供了内置的故障检测,而且能够
[电源管理]
Intersil推出混合燃料与电动车(<font color='red'>HEV</font>/EV)锂离子电池管理控制解决方案
瑞能将携IGBT和碳化硅等功率器件亮相2021慕尼黑上海电子展
中国上海 - 2021年4月7日 — 2021慕尼黑上海电子展览会即将于4月14日至16日在上海新国际博览中心举办。慕尼黑上海电子展作为电子行业展览,是行业内重要的盛事。本届慕尼黑上海电子展览会将汇聚近千家国内外优质电子企业,涵盖从产品设计到应用落地的上下游产业,展示内容包括了半导体、传感器、物联网技术、汽车电子及测试等。 作为功率半导体行业的领导企业,瑞能将第三次参加慕尼黑上海电子展,瑞能半导体展台届时会展出适用于消费类市场和工业类市场的各类功率器件产品,也会集中展示近期推出的第三代碳化硅,包括基于国际最新技术的第六代碳化硅以及碳化硅MOSFET产品系列,IGBT,TVS/ESD等多种新系列产品。在展台中,瑞能将结合新能源汽
[应用]
GaN Systems公司与罗姆联手致力于GaN功率器件的普及
GaN(氮化镓)功率器件的全球领军企业GaN Systems Inc.(以下简称“GaN Systems公司”)和功率半导体的领军企业ROHM Co., Ltd.(以下简称“罗姆”)为促进电力电子市场的创新与发展,开始就GaN功率器件事业展开合作。 此次合作将充分发挥GaN Systems公司GaN功率晶体管的业界顶级性能与罗姆的GaN功率器件技术优势及丰富的电子元器件设计/制造综合实力。双方将利用GaN Systems公司的GaNPXTM封装技术和罗姆的功率元器件传统封装技术,联合开发最适合GaN器件的产品。这将能够最大限度地挖掘并发挥GaN器件的潜力。另外,双方通过提供兼容产品,将能够为双方的客户稳定地供应GaN器件。
[半导体设计/制造]
新型混合动力汽车检测技术的研究及应用
  汽车行业的快速发展促进了汽车电子行业的发展,混合动力车型(Hybrid Electric Vehicle,HEV)作为汽车行业的新发展方向,受到了国家的重视。从技术、节能减排效果、产业化能力等诸多方面考虑,混合动力具备了传统内燃机和电动机的优势,将在较长一段时间内占据优势。混合动力车辆技术避免了纯电动车辆在电池技术和能源基础设施上的不足,成为近期新型车辆研究开发的热点。经过国家“863计划”的支持与发展,我国的混合动力车辆技术正在迅速迈向产业化。 1 混合动力控制系统   实现混合动力车共有三个关键因素:能够对汽车运行状态详细监控的系统;分析监控系统所获取的信息,并发出相应的控制命令;相比一般电子系统,混合动力车电子控
[汽车电子]
新型混合动力<font color='red'>汽车</font>检测技术的研究及应用
Ansoft在HEV/EV动力研发中之应用
  面对高度竞争化的 混合动力车 和 电动汽车 (HEV/EV)市场,动力集成研发工程师正在向更高的系统效率、稳定性和可靠性挑战。 功率逆变器 在动力集成系统中至关重要,通常由6个4×6英寸封装的IGBT模块组成。这些IGBT模块通过快速地切换数百安培电流的通断向电动机输出交流电, 控制电子系统 及其它系统。IGBT的开关频率从数十kHz到数百kHz,开通上升时间和关断下降时间达50~100ns。   高开关速度使得IGBT非常适用于功率逆变器系统但是它同时也带来两个主要的电磁问题:传导辐射(通过载流结构件)通常低于30MHz,可能导致电源完整性问题或者引起对逆变器和电动机存在潜在危害的能量反射波;辐射 电磁场 (通过空
[汽车电子]
Ansoft在<font color='red'>HEV</font>/EV动力研发中之应用
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved