1 概述
本文从实际工程的角度出发,以某大客车为研究样本,以实际整车参数作为参考,使用MotionView多体动力学仿真分析软件软件,建立悬架系统模型并进行仿真分析,采用转向盘角阶跃输入试验法,研究空气弹簧的受力、压强和高度变化对大客车整车操纵稳定性的影响。
2 悬架系统模型建立
悬架模型所使用的组成几何体从MotionView软件库中直接提取,建立的悬架模型与所需要的模型之间存在差别,导入到CATIA及AUTO CAD等CAE软件,进行位置、质量和转动惯量等参数的修改,就可以得到与整车参数相匹配的悬架模型。
2.1 前悬架系统模型
由于MotionView模型库中前悬架没有非独立悬架的形式,因此选用SLA悬架并修改参数和结构形式建立前悬架空气弹簧系统模型,建立完整的后悬架系统模型如图1,前悬架安装2个空气弹簧。 2.2 后悬架系统模型
由于 MotionView 模型库中的后悬架模型只有两个减震器和弹簧,因此将减震器和空气弹簧单独存成两个子系统,再重新定义子系统导入到后悬架系统模型中,建立完整的后悬架系统模型如图 2, 后悬架系统安装 4 个空气弹簧。 3 仿真试验方案布置
方案一:前悬架左右侧空气弹簧由一个高度阀控制;后悬架左右侧空气弹簧分别由两个独立的高度阀控制。
方案二:前悬架左右侧空气弹簧分别由两个独立的高度阀控制;后悬架布置方式与前悬架相同。
4 转向盘转角阶跃试验
基于研究目的的不同,进行悬架系统模拟仿真的试验分类不相同,本文主要通过悬架系统在给定一个转向盘转角输入后,空气弹簧受力、压强和高度的变化来研究大客车整车性能。
采用的试验方法是(左转)转向盘角阶跃输入试验法,转角以正弦形式输入。在 MotionView 中 使模型车以 50mph(22.2m/s)的速度匀速直线行驶,在汽车行驶到 2s 的时候给模型车一个 60° 转向盘角阶跃输入,经过 0.1s 转角输入结束,整个过程持续 12.1s,试验初始参数设定如图 3。
分析:1)在匀速直线行驶阶段,空气弹簧受力、压强和高度基本不变;在转向盘转角输入后空气弹簧的这三个参数发生大幅变化,经过一段时间后,接着逐渐进入稳态。
2)进入稳态后,除方案一的前悬架空气弹簧压强变化幅度和后悬架空气弹簧高度变化幅度小于 方案二,方案一的其他参数均大于方案二。
3)从汽车操纵稳定性的角度出发,通过比较两个方案参数变化幅度,方案二高度阀布置要优于方案一高度阀布置。
总结:1)使用 MotionView 可以快速建立多体动力学仿真模型,并对仿真模型进行优化分析,从而得出仿真结果,在实际生产中对整车设计提供指导参考。
2)MotionView 建立的模型需要进行实际整车验证,对不符合实际工况的模型参数进行修改, 从而减少试验过程中出现的误差,增加仿真过程中的准确性。
6 参考文献
[1] 陈燕虹, 杨兴龙, 王勋龙. 大客车空气弹簧动态特征的试验分析[J]. 汽车技术, 2002(10)
[2] 方波平. D5-260X260 空气弹簧性能概述[J]. 当代汽车, 1989.03, 3-5
[3] 马昌友. WD6890H 型客车底盘悬架设计[J]. 客车技术与研究, 1999.02, 9-11
[4] 庄德军. 膜式空气弹簧非线性弹性特性有限元分析[D], 长春: 吉林大学硕士学位论文, 2003.01(end)
关键字:大客车 悬架系统 模型建立 操稳性
引用地址:大客车悬架系统模型建立及操稳性仿真分析
本文从实际工程的角度出发,以某大客车为研究样本,以实际整车参数作为参考,使用MotionView多体动力学仿真分析软件软件,建立悬架系统模型并进行仿真分析,采用转向盘角阶跃输入试验法,研究空气弹簧的受力、压强和高度变化对大客车整车操纵稳定性的影响。
2 悬架系统模型建立
悬架模型所使用的组成几何体从MotionView软件库中直接提取,建立的悬架模型与所需要的模型之间存在差别,导入到CATIA及AUTO CAD等CAE软件,进行位置、质量和转动惯量等参数的修改,就可以得到与整车参数相匹配的悬架模型。
2.1 前悬架系统模型
由于MotionView模型库中前悬架没有非独立悬架的形式,因此选用SLA悬架并修改参数和结构形式建立前悬架空气弹簧系统模型,建立完整的后悬架系统模型如图1,前悬架安装2个空气弹簧。 2.2 后悬架系统模型
由于 MotionView 模型库中的后悬架模型只有两个减震器和弹簧,因此将减震器和空气弹簧单独存成两个子系统,再重新定义子系统导入到后悬架系统模型中,建立完整的后悬架系统模型如图 2, 后悬架系统安装 4 个空气弹簧。 3 仿真试验方案布置
方案一:前悬架左右侧空气弹簧由一个高度阀控制;后悬架左右侧空气弹簧分别由两个独立的高度阀控制。
方案二:前悬架左右侧空气弹簧分别由两个独立的高度阀控制;后悬架布置方式与前悬架相同。
4 转向盘转角阶跃试验
基于研究目的的不同,进行悬架系统模拟仿真的试验分类不相同,本文主要通过悬架系统在给定一个转向盘转角输入后,空气弹簧受力、压强和高度的变化来研究大客车整车性能。
采用的试验方法是(左转)转向盘角阶跃输入试验法,转角以正弦形式输入。在 MotionView 中 使模型车以 50mph(22.2m/s)的速度匀速直线行驶,在汽车行驶到 2s 的时候给模型车一个 60° 转向盘角阶跃输入,经过 0.1s 转角输入结束,整个过程持续 12.1s,试验初始参数设定如图 3。
图3 试验初始参数
分析:1)在匀速直线行驶阶段,空气弹簧受力、压强和高度基本不变;在转向盘转角输入后空气弹簧的这三个参数发生大幅变化,经过一段时间后,接着逐渐进入稳态。
2)进入稳态后,除方案一的前悬架空气弹簧压强变化幅度和后悬架空气弹簧高度变化幅度小于 方案二,方案一的其他参数均大于方案二。
3)从汽车操纵稳定性的角度出发,通过比较两个方案参数变化幅度,方案二高度阀布置要优于方案一高度阀布置。
总结:1)使用 MotionView 可以快速建立多体动力学仿真模型,并对仿真模型进行优化分析,从而得出仿真结果,在实际生产中对整车设计提供指导参考。
2)MotionView 建立的模型需要进行实际整车验证,对不符合实际工况的模型参数进行修改, 从而减少试验过程中出现的误差,增加仿真过程中的准确性。
6 参考文献
[1] 陈燕虹, 杨兴龙, 王勋龙. 大客车空气弹簧动态特征的试验分析[J]. 汽车技术, 2002(10)
[2] 方波平. D5-260X260 空气弹簧性能概述[J]. 当代汽车, 1989.03, 3-5
[3] 马昌友. WD6890H 型客车底盘悬架设计[J]. 客车技术与研究, 1999.02, 9-11
[4] 庄德军. 膜式空气弹簧非线性弹性特性有限元分析[D], 长春: 吉林大学硕士学位论文, 2003.01(end)
上一篇:恩智浦RoadLINK技术加快V2X 通信发展
下一篇:重型汽车车架有限元模态分析与试验模态分析比较
推荐阅读最新更新时间:2024-05-02 23:25
为低噪声小功率精密放大器建立准确的Spice模型
系统工程师们需要所有类型IC的准确模型,他们需要用Spice模型来运行复杂的电路仿真。早期的Spice模型几乎没有什么非线性元件,需要以准确性为代价而获得尽量少的仿真时间,而新方法增加了非线性元件的数量,并改进了准确性。对于小功率低噪声运算放大器,可以建立一种多级的模型。模型采用了Analog Devices公司的工作成果(参考文献1),需要对小功率低噪声精密放大器的建模作一些架构上的改变。模型架构上要通过八级来处理输入信号。用一个手持计算器就可以简单地算出八级的一些参数。要理解建模过程,必须有使用Spice的经验。 虽然较高速放大器有多个极点和零点,但本模型是针对单极的10 MHz放大器。它可以仿真放大器的主要AC与DC参
[工业控制]
小广播
热门活动
换一批
更多
最新嵌入式文章
更多精选电路图
更多热门文章
更多每日新闻
- PC产业驶入创新超车道,英特尔蓉城撬动AI新引擎
- 与产业聚力共赢,英特尔举行新质生产力技术生态大会
- “新”享5G-A万兆网络前沿体验 高通携手产业伙伴亮相第二届链博会
- 英飞凌推出符合ASIL-D标准的新型汽车制动系统和电动助力转向系统三相栅极驱动器 IC
- 南芯科技推出80V升降压转换器,持续深耕工业储能市场
- 法雷奥与罗姆联合开发新一代功率电子领域
- 贸泽电子开售能为电动汽车牵引逆变器提供可扩展性能的 英飞凌HybridPACK Drive G2模块
- 德州仪器新型 MCU 可实现边缘 AI 和先进的实时控制, 提高系统效率、安全性和可持续性
- 瑞萨推出高性能四核应用处理器, 增强工业以太网与多轴电机控制解决方案阵容
- 研华全新模块化电脑SOM-6833助力5G路测设备升级
更多往期活动
厂商技术中心