安全第一!许多工业过程涉及到有毒化合物,例如:制造塑料、农用化学品和医药产品会用到氯气;生产半导体需要使用磷化氢和砷化氢;燃烧消费类包装材料会释放出氰化氢。因此,了解有毒气体浓度是否达到危险程度十分重要。
在美国,国家职业安全与健康研究所(NIOSH)和美国政府工业卫生学家会议(ACGIH)已规定了许多有毒工业气体的短时间和长时间接触限值。“阈限值—时间加权平均值”(TLV-TWA)是指大多数工人可以在正常8小时工作日内反复接触而不会受到有害影响的时间加权平均浓度。“阈限值—短时间接触限值”(TLV-STEL)是指大多数工人可以短时间接触而不会受到刺激或伤害的浓度。“立即威胁生命或健康的浓度”(IDLHC)是一种限制性浓度,它会对生命立即或缓慢产生威胁,导致不可逆转的健康损害,或者影响工人独立逃生的能力。表1列出了几种常见气体的限值。
表1. 某些常见工业有毒气体的接触限值
对于检测或测量有毒气体浓度的仪器,电化学传感器能够提供多项优势。大多数传感器都是针对特定气体而设计,可用分辨率小于气体浓度的百万分之一(1 PPM),所需工作电流极小,非常适合便携式电池供电的仪器。电化学传感器的一个重要特性是响应缓慢:首次上电后,传感器可能需要数分钟时间才能建立至最终输出值;暴露于中间量程的气体浓度时,传感器可能需要25到40秒时间才能达到最终输出值的90%。
本文描述一种使用电化学传感器的便携式一氧化碳(CO)探测器。一氧化碳的IDLH浓度远高于大多数其它有毒气体,处理起来相对更安全。但一氧化碳仍然属于致命性气体,测试本文所述电路时应极其小心并采取适当的通风措施。
图1. CO-AX一氧化碳传感器
图1所示为 Alphasense公司的CO-AX传感器。表2是CO-AX传感器技术规格摘要。
表2. CO-AX传感器技术规格
对于这种应用中的便携式仪表,实现最长的电池寿命是最重要的目标,因此,必须将功耗降到最低,这一点至关重要。在典型的低功耗系统中,测量电路上电后执行一次测量,然后关断进入长时间待机状态。然而,在这种应用中,由于电化学传感器的时间常数很长,测量电路必须始终保持上电状态。幸运的是,因为响应缓慢,所以我们可以使用微功耗放大器、高值电阻和低频滤波器,从而将约翰逊噪声和1/f噪声降至最低。此外,单电源供电可避免双极性电源的功率浪费现象。
图2给出了该便携式气体探测器的电路。双通道微功耗放大器 ADA4505-2在恒电位配置(U2-A)和跨导配置(U2-B)下使用。该放大器的功耗和输入偏置电流非常低,对于恒电位部分和跨导部分都是很好的选择。每个放大器的功耗仅10 μA,因此电池寿命非常长。[page]
图2. 使用电化学传感器的便携式气体探测器
在三电极电化学传感器中,目标气体扩散到传感器,通过一层薄膜后作用于工作电极(WE)。恒电位电路检测参考电极(RE)的电压,并向辅助电极(CE)提供电流,使RE端与WE端之间的电压保持恒定。RE端没有电流流进或流出,因此流出CE端的电流流进WE端,该电流与目标气体浓度成正比。流过WE端的电流可能是正值,也可能是负值,具体取决于传感器中发生的是还原反应还是氧化反应。对于一氧化碳,发生氧化时,CE端电流为负值(电流流入恒电位运算放大器的输出端)。电阻R4通常非常小,因此WE端的电压约等于VREF.
流入WE端的电流会导致U2-A的输出端产生相对于WE端的负电压。对于一氧化碳传感器,此电压通常为数百毫伏,但对于其它类型的传感器,此电压可能高达1 V。为采用单电源供电,微功耗基准电压源 ADR291(U1)将整个电路提升到地以上2.5 V。ADR291的功耗仅12 μA;它还能提供基准电压,以使模数转换器可对此电路的输出进行数字化处理。
跨导放大器的输出电压为:
(1)
其中:
IWE 为流入WE端的电流。
Rf 为跨导电阻(在图2中显示为U4)。
传感器的最大响应为90 nA/ppm,如表2所示,其最大输入范围为2,000 ppm。因此,最大输出电流为180 μA,最大输出电压由跨导电阻决定,如公式2所示。
(2)
针对不同气体或来自不同制造商的传感器具有不同的电流输出范围。如果U4使用可编程变阻器AD5271,而不是固定电阻,就可以针对不同的气体传感器采用相同的结构和材料。此外,这样的产品还支持调换传感器,因为微控制器可以针对不同的气体传感器,将AD5271设置为适当的电阻值。AD5271的温度系数为5 ppm/°C,优于大多数分立电阻;其电源电流为1 μA,对系统功耗的影响极小。
采用5 V单电源供电时,根据公式1可知,跨导放大器U2-B的输出范围为2.5 V。如果将AD5271设置为12.5 kΩ,就可以利用传感器最差灵敏度情况下的范围,并能提供大约10%的超量程能力。
使用65 nA/ppm的典型传感器响应,可以通过下式将输出电压转换为一氧化碳的ppm:
(3)
采用差分输入ADC时,只需将2.5 V基准电压输出端连接到ADC的AIN-端,从而消除公式3中的2.5 V项。
电阻R4使跨导放大器的噪声增益保持在合理水平。R4的值需权衡两个因素:噪声增益的幅度和暴露于高浓度气体时传感器的建立时间误差。对于本电路,R4 = 33 Ω,由此可计算噪声增益等于380,如公式4所示。
(4)
跨导放大器的输入噪声应乘以此增益。ADA4505-2的0.1 Hz至10 Hz输入电压噪声为2.95 μV p-p,因此输出端的噪声为:
(5)
该输出噪声相当于1.3 ppm p-p以上的气体浓度,这种低频噪声难以滤除。幸好传感器响应非常慢,因此由R5和C6构成的低通滤波器可以具有0.16 Hz的截止频率。此滤波器的时间常数为1秒,与传感器的30秒响应时间相比可忽略不计。
Q1为P沟道JFET。电路启动时,栅极电压为VCC,晶体管断开。系统关断时,栅极电压降至0 V,JFET开启,使RE端和WE端保持相同的电位。当电路再次启动时,这可以大大改善传感器的开启建立时间。
该电路由两节AAA电池供电。使用二极管提供反向电压保护会浪费宝贵的电能,因此本电路使用P沟道MOSFET (Q2)。该MOSFET通过阻塞反向电压来保护电路,施加正电压时导通。MOSFET的导通电阻小于100 mΩ,因此它引起的压降远小于二极管。除AAA电池以外,降压-升压调节器ADP2503还允许使用最高5.5 V的外部电源。在省电模式下工作时,ADP2503的功耗仅38 μA。由L2、C12和C13构成的滤波器可消除模拟电源轨产生的任何开关噪声。连接外部电源时,该仪表不是通过一个电路来断开电池,而是利用一个插孔以机械方式断开电池,从而避免电能浪费。
使用AAA电池时,正常情况(未检测到气体)下的总功耗约为100 μA,最差情况(检测到2,000 ppm CO)下的总功耗约为428 μA。如果该仪表与一个微控制器相连,在不进行测量时可进入低功耗待机模式,则电池寿命可达1年以上。
关键字:探测器 有毒气体
引用地址:低功耗有毒气体探测器设计
在美国,国家职业安全与健康研究所(NIOSH)和美国政府工业卫生学家会议(ACGIH)已规定了许多有毒工业气体的短时间和长时间接触限值。“阈限值—时间加权平均值”(TLV-TWA)是指大多数工人可以在正常8小时工作日内反复接触而不会受到有害影响的时间加权平均浓度。“阈限值—短时间接触限值”(TLV-STEL)是指大多数工人可以短时间接触而不会受到刺激或伤害的浓度。“立即威胁生命或健康的浓度”(IDLHC)是一种限制性浓度,它会对生命立即或缓慢产生威胁,导致不可逆转的健康损害,或者影响工人独立逃生的能力。表1列出了几种常见气体的限值。
表1. 某些常见工业有毒气体的接触限值
对于检测或测量有毒气体浓度的仪器,电化学传感器能够提供多项优势。大多数传感器都是针对特定气体而设计,可用分辨率小于气体浓度的百万分之一(1 PPM),所需工作电流极小,非常适合便携式电池供电的仪器。电化学传感器的一个重要特性是响应缓慢:首次上电后,传感器可能需要数分钟时间才能建立至最终输出值;暴露于中间量程的气体浓度时,传感器可能需要25到40秒时间才能达到最终输出值的90%。
本文描述一种使用电化学传感器的便携式一氧化碳(CO)探测器。一氧化碳的IDLH浓度远高于大多数其它有毒气体,处理起来相对更安全。但一氧化碳仍然属于致命性气体,测试本文所述电路时应极其小心并采取适当的通风措施。
图1. CO-AX一氧化碳传感器
图1所示为 Alphasense公司的CO-AX传感器。表2是CO-AX传感器技术规格摘要。
表2. CO-AX传感器技术规格
对于这种应用中的便携式仪表,实现最长的电池寿命是最重要的目标,因此,必须将功耗降到最低,这一点至关重要。在典型的低功耗系统中,测量电路上电后执行一次测量,然后关断进入长时间待机状态。然而,在这种应用中,由于电化学传感器的时间常数很长,测量电路必须始终保持上电状态。幸运的是,因为响应缓慢,所以我们可以使用微功耗放大器、高值电阻和低频滤波器,从而将约翰逊噪声和1/f噪声降至最低。此外,单电源供电可避免双极性电源的功率浪费现象。
图2给出了该便携式气体探测器的电路。双通道微功耗放大器 ADA4505-2在恒电位配置(U2-A)和跨导配置(U2-B)下使用。该放大器的功耗和输入偏置电流非常低,对于恒电位部分和跨导部分都是很好的选择。每个放大器的功耗仅10 μA,因此电池寿命非常长。[page]
图2. 使用电化学传感器的便携式气体探测器
在三电极电化学传感器中,目标气体扩散到传感器,通过一层薄膜后作用于工作电极(WE)。恒电位电路检测参考电极(RE)的电压,并向辅助电极(CE)提供电流,使RE端与WE端之间的电压保持恒定。RE端没有电流流进或流出,因此流出CE端的电流流进WE端,该电流与目标气体浓度成正比。流过WE端的电流可能是正值,也可能是负值,具体取决于传感器中发生的是还原反应还是氧化反应。对于一氧化碳,发生氧化时,CE端电流为负值(电流流入恒电位运算放大器的输出端)。电阻R4通常非常小,因此WE端的电压约等于VREF.
流入WE端的电流会导致U2-A的输出端产生相对于WE端的负电压。对于一氧化碳传感器,此电压通常为数百毫伏,但对于其它类型的传感器,此电压可能高达1 V。为采用单电源供电,微功耗基准电压源 ADR291(U1)将整个电路提升到地以上2.5 V。ADR291的功耗仅12 μA;它还能提供基准电压,以使模数转换器可对此电路的输出进行数字化处理。
跨导放大器的输出电压为:
其中:
IWE 为流入WE端的电流。
Rf 为跨导电阻(在图2中显示为U4)。
传感器的最大响应为90 nA/ppm,如表2所示,其最大输入范围为2,000 ppm。因此,最大输出电流为180 μA,最大输出电压由跨导电阻决定,如公式2所示。
针对不同气体或来自不同制造商的传感器具有不同的电流输出范围。如果U4使用可编程变阻器AD5271,而不是固定电阻,就可以针对不同的气体传感器采用相同的结构和材料。此外,这样的产品还支持调换传感器,因为微控制器可以针对不同的气体传感器,将AD5271设置为适当的电阻值。AD5271的温度系数为5 ppm/°C,优于大多数分立电阻;其电源电流为1 μA,对系统功耗的影响极小。
采用5 V单电源供电时,根据公式1可知,跨导放大器U2-B的输出范围为2.5 V。如果将AD5271设置为12.5 kΩ,就可以利用传感器最差灵敏度情况下的范围,并能提供大约10%的超量程能力。
使用65 nA/ppm的典型传感器响应,可以通过下式将输出电压转换为一氧化碳的ppm:
采用差分输入ADC时,只需将2.5 V基准电压输出端连接到ADC的AIN-端,从而消除公式3中的2.5 V项。
电阻R4使跨导放大器的噪声增益保持在合理水平。R4的值需权衡两个因素:噪声增益的幅度和暴露于高浓度气体时传感器的建立时间误差。对于本电路,R4 = 33 Ω,由此可计算噪声增益等于380,如公式4所示。
跨导放大器的输入噪声应乘以此增益。ADA4505-2的0.1 Hz至10 Hz输入电压噪声为2.95 μV p-p,因此输出端的噪声为:
该输出噪声相当于1.3 ppm p-p以上的气体浓度,这种低频噪声难以滤除。幸好传感器响应非常慢,因此由R5和C6构成的低通滤波器可以具有0.16 Hz的截止频率。此滤波器的时间常数为1秒,与传感器的30秒响应时间相比可忽略不计。
Q1为P沟道JFET。电路启动时,栅极电压为VCC,晶体管断开。系统关断时,栅极电压降至0 V,JFET开启,使RE端和WE端保持相同的电位。当电路再次启动时,这可以大大改善传感器的开启建立时间。
该电路由两节AAA电池供电。使用二极管提供反向电压保护会浪费宝贵的电能,因此本电路使用P沟道MOSFET (Q2)。该MOSFET通过阻塞反向电压来保护电路,施加正电压时导通。MOSFET的导通电阻小于100 mΩ,因此它引起的压降远小于二极管。除AAA电池以外,降压-升压调节器ADP2503还允许使用最高5.5 V的外部电源。在省电模式下工作时,ADP2503的功耗仅38 μA。由L2、C12和C13构成的滤波器可消除模拟电源轨产生的任何开关噪声。连接外部电源时,该仪表不是通过一个电路来断开电池,而是利用一个插孔以机械方式断开电池,从而避免电能浪费。
使用AAA电池时,正常情况(未检测到气体)下的总功耗约为100 μA,最差情况(检测到2,000 ppm CO)下的总功耗约为428 μA。如果该仪表与一个微控制器相连,在不进行测量时可进入低功耗待机模式,则电池寿命可达1年以上。
上一篇:一体化步进电机微型驱动控制器选型快速指南
下一篇:变频器参数功能及设置浅谈
推荐阅读最新更新时间:2024-05-02 23:42
Allegro MicroSystems 推出光电烟雾探测器 IC
Allegro MicroSystems 推出一款全新的低电流 BiCMOS 光电烟雾探测器 IC,该 IC 具有超低待机电流,平均电池寿命长达 10 年。 Allegro 的 A5303 器件可与红外光室配合使用,感测烟雾微粒散发的光线。联网功能让设备实现互连,当任何设备探测到烟雾时,所有设备都能发出声音告警。设计中还整合特殊功能,促进成品探测器的协同作业和测试。该新器件主要面向消费烟雾告警市场。 可变增益光学放大器可直接与红外发射器-探测器对交互。放大器增益水平由两个外置电容确定,并根据运行模式在内部进行选择。在待机和计时器模式中选择低增益。当发生本地告警时,该低增益将(内部)增加约 45%,以提供滞后。在按键测
[安防电子]
实用安防产品 有望大举进军家庭安防市场
随着改革开放的深入和城乡经济的迅速发展,城市流动人口的大量增加,带来社会诸多的不安定因素,治安形势日趋严峻,刑事案件特别是入室偷窃、抢劫等发案率增加。因此,国家有关部门提出对社会治安进行综合治理,并把创建安全文明社区作为其中一项重要内容。同时,为了进一步规范住宅社区智能化建设,建设部特别制定了智能社区的等级标准,按照其要求智能社区必须具有安全防范、信息管理、物业管理、信息网络等子系统。因此,社区安防系统建设已逐渐纳入许多社区建设的必备项目中了,以深圳地区为例,几乎所有新建的住宅楼盘都预装了家庭防盗系统,并禁止安装防盗网,而广州更花费重金拆除防盗网,其防盗功能则必然地转由电子防盗系统来完成。因此,住宅社区安防系统建设在未
[安防电子]
金属探测器原理分析
金属探测器是一种专门用来探测金属的仪器,它利用了电磁感应的原理,产生的磁场在金属内部能感生涡电流,而涡电流又会产生磁场从而影响原来的磁场,引起鑫属探测器发出声音。金属探测器是一种专门用来探测金属的仪器,除了用于探测有金属外壳或金属部件的地雷之外,还可以用来探测隐蔽在墙壁内的电线、埋在地下的水管和电缆,甚至能够地下探宝,发现埋藏在地下的金属物体。 金属探测器原理 由金属探测器的电路框图可以看出,本金属探测器由高频振荡器、振荡检测器、音频振荡器和功率放大器等组成。 1、高频振荡器 由三极管VT1和高频变压器T1等组成,是一种变压器反馈型LC振荡器。T1的初级线圈L1和电容器C1组成LC并联振荡回路,其振荡频率约200kHz
[测试测量]
设计低功耗有毒气体检测仪
安全第一!许多工业过程涉及有毒化合物,包括用于制造塑料、农用化学品和医药产品的氯;用于生产半导体的磷化氢和砷烷;以及燃烧消费品包装材料时释放的氰化氢。重要的是要知道何时存在危险浓度。 在美国,国家职业安全与健康研究所(NIOSH)和美国政府工业卫生学家会议(ACGIH)已经为许多有毒工业气体制定了短期和长期暴露限值。阈值极限值-时间加权平均值 (TLV-TWA) 是大多数工人可以在 8 小时内反复接触而不会产生不利影响的 TWA 浓度;阈值限值-短期暴露限值(TLV-STEL)是大多数工人可以在短时间内连续暴露而不会受到刺激,损害或损害的浓度;立即危及生命或健康浓度(IDLHC)是一种限制浓度,对生命构成直接或延迟的威胁,会造
[测试测量]
浅析防盗报警系统总线及总线探测器优势
随着时代的变迁,人们对安全要求不断提高,促进了安防领域防盗报警技术的进步。传统防盗报警系统的应用及安装方式已经受到了来自新技术应用的挑战,它们凭借施工安装便利、资金投入少、后期维护简单等优势,一波接一波地冲击着传统的技术方式。欲知详情,请看下文详解。 现有系统总线面临的挑战 现今社会人们需要安全、舒适的生活、工作环境,其人身、财产安全都需要得到保护;政府、企事业单位、机关等各类团体性机构,乃至国家财产也需要得到保护。随着现代高新技术的进步,以及人们防范意识的增强,各种安全防范设施应运而生。其中,安全防范报警系统就是最重要、最具代表性的安全防范设施之一。 在整个防盗报警系统组成中,前端入侵探测器多数采用分线制
[安防电子]
大疆将从2020年开始为无人机装配飞机与直升机探测器
为了飞行器的安全性,大疆将让其未来的无人机更难靠近大型飞机。该公司日前宣布,所有重量超过250克、于2020年1月1日后发布的无人机,将配备内置的飞机和直升机探测器。 大疆的新无人机将采用名为“AirSense”的ADS-B探测器,以便其在飞机或直升机附近飞行时向操作员发出警报。需要注意的是,这系统不会自动让无人机飞离大型飞机,具体怎么做仍取决于操作员。 一些监管机构,如美国联邦航空管理局,并没有强制要求无人机使用ADS-B,但大疆已经在其更专业的产品上运用了该技术,如Matrice 200和Mavic 2 Enterprise。 大疆的无人机已经内置了许多具有安全意识的功能,例如自动避障、地理围栏、海拔限制以及自动返回起飞点的功
[机器人]
基于红外技术的医疗监护系统的实现
在医院中,为使患者得到更好的照料或为医学观察研究之用,监护系统是必可少的。现在大部分医院所用监护系统为电视系统和微光监护系统,它们对光线的要求较高,而基于红外成像技术的医疗监护系统就不存在这一问题。 硬件实现 如图1和图2所示,整个红外监护系统分成两部分:一部分置于患者病房内,以获取患者信息,称之为前端;另一部分置于监控室内,负责将患者信息提供给监护人员,称之为后端;二者之间可根据情况进行有线、无线或红外视频传输。 图1 红外监护系统前端 图2 红外监护系统后端 前端的调焦模块控制镜头的光学调焦,以保证成像质量的清晰。红外探测器是整个系统的核心,负责将采集到的红外信号转换成视频电信号。支持模块
[医疗电子]
我国首次火星探测任务命名为:“天问一号”
国家航天局正式宣布,将我国行星探测任务命名“天问”,将我国首次火星探测任务命名为“天问一号”,同时公布了我国首次火星探测标识“揽星九天”。此外,我国火星车名称的全球征集活动也即将启动。 此外,我国正在开展首次火星探测工程的研制工作。按照计划,2020 年我国将通过长征五号发射火星探测器,并通过一次发射实现火星环绕、着陆和巡视探测。大约经过七个月的飞行之后,火星探测器就将抵达火星。 据中国首次火星探测任务相关专家介绍,我国火星探测任务的实施步骤分别是:使用长征五号火箭将火星探测器发射至地火转移轨道,随后在地面测控系统的支持下,通过多次轨道机动和中途修正,在近火点实施制动,进入环火椭圆轨道,运行到选定的进入窗口,探测器将进行降
[嵌入式]
小广播
热门活动
换一批
更多
最新嵌入式文章
更多精选电路图
更多热门文章
更多每日新闻
更多往期活动
- 直播:计算机视觉影像处理应用于智能驾驶的未来及挑战
- 【EEWORLD带你DIY】数字示波器V1.0进展贴
- 有奖直播:英飞凌工业半导体在电机驱动行业中的应用 2020年4月21日 上午10:00-11:30 准时开启!
- 用心分享,一起成长!EEWORLD月月有奖优秀主题/回复第28期开始啦~
- EEWorld邀你来拆解(第四期):热门充电宝大拆解
- 有奖评测+DIY:玩转新版1.3元单片机CH554,赢以太网分析仪器/USB分析仪
- 灵动MM32 eMiniBoard免费测评试用
- 电阻哪个强?看Vishay演示视频 抢楼发言赢好礼
- ADI有奖下载活动之12 ADI基于视觉的占用检测解决方案
- 电路图站2.0版上线,公开征集网友建议,填写调查问卷赢积分!
11月13日历史上的今天
厂商技术中心