基于双DSP的无刷直流电机控制器硬件设计和实现

发布者:等放假的zr0最新更新时间:2015-11-30 关键字:双DSP  无刷直流电机 手机看文章 扫描二维码
随时随地手机看文章
摘要:根据无刷直流电机理论和系统的要求,以双TMS320F2812 DSP处理器为核心,针对系统的高可靠性要求,进行了无刷直流电机控制器的硬件电路设计并对核心电路进行分析、仿真和实验验证;结果表明,该硬件电路可实现无刷直流电机正常调速的控制需求,相应性能指标可满足系统需求。

0 引言

无刷直流电机(以下简称BLDCM)用电子换相器取代机械换向器,根除了电刷和换向器接触磨损所导致的寿命周期短、电气绝缘低、火花干扰强等诸多缺陷;同时永磁材料的高磁性能使无刷直流电机具有起动转矩大、调速范围广、运行效率高等优点,在各个工业领域有着广泛应用。

由于本系统有较高的可靠性要求,因此总体设计思路是采用主控、监控双DSP系统架构满足控制器的高可靠性要求;三相功率逆变器选用三菱公司的第五代智能功率模块PM15 0CLA120为核心,采用光耦HCPL4506进行门极驱动信号隔离;采用多传感器进行系统状态监测并通过转速和电流双闭环控制策略进行电机转速精确控制,从而满足系统对无刷电机控制器的高可靠性运行和精确的转速控制以及宽范围转速调节等控制要求。

1 系统组成

BLDCM控制系统原理框图如图1所示,控制器通过RS422与上位机进行通信;无刷电机通过机械传动装置驱动系统运转;采用旋转变压器传感器作为BLDCM的转子位置和转速反馈元件。

a.jpg

控制器采用高性能的数字信号处理器作为控制核心,其中主控DSP完成无刷直流电机的转速和电流双闭环控制,满足无刷电机具有调速范围宽、控制精度高的要求;监控DSP完成系统温度、电流、电压、转速等状态监控,通过传感器检测冗余(数量冗余、类型冗余、位置冗余)设置,既可以实现关键参数的精确测量和控制策略的精细化操作,还可以确定功率开关及电机三相绕组故障状态。监控DSP和主控DSP通过双口RAM(DPRAM)快速进行数据交换,便于控制系统工作。

2 各模块设计

2.1 双DSP设计

控制器选用的TMS320F2812是美国TJ公司推出的32位定点数字信号处理器,专门针对电机和运动控制。主控DSP具备6路PWM 输出模块、功率驱动及逆变模块、旋变位置传感器激励及解算模块、模拟量转换模块、SCI通信等主要模块,具有很强的实时数据运算能力;监控DSP进行模拟信号采集、外部通讯、系统运行工况监控等非实时信息处理。

由于DSP嵌入式系统的特点在于高速数据处理,因此实现主DSP与从DSP之间的数据通信成为主从式硬件系统的一个设计关键。本系统利用DPRAM作为共享存储器进行通信,其优点是实时性好,可靠性高,数据传输效率高,接口电路简单。DPRAM的每个端口都有各自的数据、地址、控制总线,允许处理器对存储器的任何地址执行随机读写操作。DPRAM与两个DSP之间的硬件连接关系如图2所示。

b.jpg

2.2 功率逆变电路及驱动设计

根据控制器负载需求及功率开关器件的应用场合,设计选用三菱公司第五代智能功率模块PM150CLA120(以下简称IPM)为功率逆变电路,其主要设计参数为耐压1200V、最大负载电流150A;该IPM模块内部集成了6个IGBT开关管逆变电路、优化门极驱动电路以及快速保护电路,其内部框图如图3所示并其具有以下突出优点:1)开关管导通压降低、开关损耗低;2)集成过流、过热、欠压等保护功能;3)内置自举电路实现单电源供电;4)采用优化设计抑制浪涌、噪声等引起的干扰问题。

c.jpg

主控DSP输出6路PWM信号用于驱动功率逆变电路过程中,为防止控制信号受功率驱动电路的干扰,采用“光耦+隔离电源”的方式用于逆变桥功率开关的门极驱动。设计使用光耦HCPL4506作为隔离驱动电路的核心芯片,其最大驱动电流2.5A,可满足功率模块PM150CLA120的驱动电流要求;原副边之间瞬态隔离电压10kV/μs,可以确保各功率开关之间的隔离强度;使用隔离电源DC/DC模块PWF2415D作为IGBT功率开关门极驱动电源,隔离强度为1500VAC,同时具有输出短路保护(自恢复)功能。

2.3 电流采样设计

控制系统设计选用隔离型电流传感器GCBC100进行电流采样,其灵敏度为40mV/A,非线性度为±1%,符合控制系统的精度要求。采样电路将电流传感器输出电压信号,经过运算放大器及滤波电路,转换为DSP的AD通道能够接收的电压范围(0~3.3V),使控制器能够实时监控电流的变化,进行电流环 PID调节。

2.4 旋变解算

旋变解算芯片采用AD公司的AD2S82A芯片,其可以将旋转变压器输出的模拟位置信号转换成数字位置信号,而且同时还可以得到高精度的速度信号,能够很好地满足位置及速度反馈信号的要求。并设置为12位解算精度,对应跟踪转换速度最高可达15600r/min,满足设计要求;使用由运算放大器、电阻和电容构成的文氏桥正弦波激励发生电路产生旋变激励信号,结构简单,可靠性高。

d.jpg

AD2S82A内部结构如图4所示。旋转变压器输出的正、余弦信号经滤波、放大后输入至AD2S82A的sin和cos引脚,在合适的外围配置电路配合下,AD2S82A即可完成12位数字量输出。AD2S82外围配置电路由电阻和电容构成,以实现引脚电平上拉、下拉、高频滤波、增益设定、最大跟踪速率设定和闭环带宽等设定功能,设计严格参考相应的数据手册及相关软件进行选取,保证AD2S82能够可靠工作。

3 试验验证

3.1 旋变解算试验

图5为无刷电机匀速旋转时旋转变压器(RVDT)的激励信号、正弦输出信号和余弦输出信号的测试波形,从图中可以看出两路输出信号正交,输出信号与激励信号过零点重合,未出现相位偏移现象。输出信号经旋变结算芯片AD2S82A解算输出12位数字量(0~8191对应转子位置角度0~360°),DSP使用数据总线在PWM中断程序中连续4次读取RVDT的解算信号如图6所示。以上分析可知,RVDT解算电路实现了无刷电机转子位置的解算,能够准确的反映电机转子的实际位置,为电机调速控制提高可靠的硬件基础。

e.jpg

f.jpg

3.2 PWM驱动试验

主控DSP输出的PWM信号为控制系统中的关键控制信号之一,控制IPM中IGBT的导通和关断,根据调压调速的原理调节无刷电机转速。 IPM上下桥臂IGBT采取互补模式工作,当上下桥臂IGBT的开关状态发生翻转时,为防止发生直通而导致短路,必须在PWM信号发生翻转时设置死区时间;本文设定的死区时间为1μs,PWM死区时间测定波形如图7所示。两相上下桥臂IGBT开关控制波形如图8所示,采用中心对称模式的PWM控制,斩波频率为15kHz时,电机绕组电压通断频率为PWM斩波频率的两倍,即为30kHz,可有效减小无刷电机的转矩脉动。

g.jpg

由于功率逆变电路采用三相全桥逆变拓扑结构,为保证电机出力最大,功率逆变电路桥臂输出的电压应与对应的无刷直流电机绕组反电动势保持适当的相位关系。图 9是对电机转子位置信号值进行软件调整后、功率逆变电路输出的A相电压与无刷直流电机A相绕组的反电势波形,两者过零点对齐,逆变电路桥臂输出的电压波形接近正弦波,满足采用PWM方式驱动无刷直流电机的供电要求。

h.jpg

3.3 三相绕组电流测试

图10为无刷电机正常运行过程中,上位机调试平台观测到的两相绕组电流波形ia、ib(ic=-ia-ib为减少数据量,ic未进行显示)。为方便调试,DSP定时将需要观察的变量上传到上位机调试平台,调试平台把上传的数据绘制成曲线。图中纵坐标为信号幅值对应的A/D转换值,横坐标为上传点数。试验表明电流采样电路能够真实的反映电机绕组实际电流值,硬件设计合理。

i.jpg

4 结论

本文是基于双TMS320F2812 DSP处理器为核心,进行无刷直流电机控制器硬件设计,利用主控DSP进行系统实时控制、利用监控DSP对系统状态进行全面监控,以提高系统运行可靠性。对核心硬件电路进行试验,结果表明控制器硬件电路设计能够为软件设计提供可靠的平台。

关键字:双DSP  无刷直流电机 引用地址:基于双DSP的无刷直流电机控制器硬件设计和实现

上一篇:基于双DSP的无刷直流电机控制器硬件设计和实现
下一篇:基于双DSP的无刷直流电机控制器硬件设计和实现

推荐阅读最新更新时间:2024-05-03 00:06

基于DSP无刷直流电机控制系统的研究与设计
   引言   近几年来,随着电力电子器件和现代控制理论的迅速发展,无刷直流电动机由于没有接触式换向装置,不存在换向引起的火花,其具有效率高,转速不受机械换向所限制,可维护性强,安全性高等诸多优点,而被人们广泛应用于光驱、智能机器人、电动交通工具等领域。DSP(数字信号处理器)则以其高速的数据处理能力、丰富的内部资源、集成度高和功耗低等特点,已广泛应用在控制领域中。本文提出了一种基于DSP的无刷直流电机控制系统的设计方案。该设计结合模糊控制方法来实现无刷直流电动机的智能化控制。    1 无刷直流电机的数学模型   根据物理学公式,单根导体在磁场中切割磁力线运动时,所产生的电动势e为:   式中,B为磁场感应强度,l为
[嵌入式]
基于DSP的两相无刷直流电机转速控制系统
   0 引 言   稀土永磁无刷直流电机采用高性能的稀土永磁材料和非接触换相技术,体积小,效率高,无电火花,工作可靠,同时又具有类似普通直流电动机的调速性能,广泛应用于航空航天、精密仪器和工业控制自动化等领域。无刷直流电机采用电子换相装置,没有机械电刷;采用永磁体转子,没有激磁损耗;发热的电枢绕组置于外围的定子上,散热性好,效率高,过载能力强,无换相火花,在高转速领域尤为适合,是高速电机的一个重点发展方向。   目前,在一些特殊领域,对电机体积、连线数目以及可靠性等方面有着严格要求,在这些场合,无位置传感器无刷直流电机(BLDCM)就成了理想的选择。课题利用DSP,CPLD等数字化设计技术构建了一个体积较小的高转速、高可靠性
[嵌入式]
基于DSP的磁轴承数字控制器容错设计
摘要:分析并提出了应用于磁轴承的双DSP热备容错控制方案,本方案采用时钟同步技术,由总线表决模块实现系统的容错处理,由硬件判决实现硬件故障判断。再根据以上两个判决模块的结果由中心仲裁模块进行复杂的仲裁,并完成切换和完善的报警逻辑,从而实现容错功能,较大地提高了磁轴承控制系统的可靠性。以上所有逻辑均由VHDL语言在CPLD上实现。 关键词:容错 磁轴承控制器 CPLD DSP 电磁轴承(AMB)是利用可控电磁吸力将转子悬浮起来的一种新型高性能轴承,由于其具有无接触、无摩擦、高速度、高精度、不需润滑和密封等一系列的优良品质,在交通、超高速超精密加工、航空航天等高科技领域有着广泛的应用。 由于磁悬浮系统本征不稳定,控制
[嵌入式]
基于DSP的红外视场调焦系统设计
  双视场红外光学系统能够同时提供两幅不同放大率、不同视场的图像,系统中的大视场分辨率较低,用于在大范围内搜索目标;小视场分辨率较高,用于对具体目标进行识别、分析和确认。因此红外双视场系统广泛地应用在机载、车载等光电侦察设备中。本文根据双视场红外光学系统的工作特点和技术要求,设计了一套基于DSP的光学镜头调焦系统。应用光机电一体化设计思想,通过沿轴平行移动光学镜组的方式实现大小视场快速切换及调焦的功能。    1 调焦系统方案设计   1.1 调焦方式的选择    常见的双视场变焦系统分为两类:光学镜组移入移出切换式变焦系统和双位置变焦系统。切换式变焦系统需要将部分透镜插入到适当的位置改变光学系统的焦距,因此横向尺寸较大。双
[嵌入式]
基于MC9S12X128无刷直流电机控制系统设计
    直流无刷电机是一种高性能电机,它具有效率高、可靠性好、结构简单、便于维护和体积小等优点。与直流电机相比,无刷电机没有电刷和换相器,而采用电子电路进行换相,换相时不会产生电火花,不存在机械换向损耗。与异步电机相比,无刷电机的转子与定子磁场同步旋转,因此不存在转子损耗。与同步电机相比,无刷电机控制方法简单,便于工程应用的特性,使其被广泛应用于众多领域。     直流无刷电机的控制方案有多种,如文献采用DSP作为主控制器的控制系统,文献采用FPAG控制无刷电机,文献选用MEGA8单片机控制方案。这些控制方法都能够实现电机的正反转、启停等控制,但在系统实现成本、控制精度、运行稳定性和外围电路的能源消耗等方面上却有较大的差别。使用DS
[电源管理]
基于MC9S12X128<font color='red'>无刷直流电机</font>控制系统设计
方波无感无刷直流电机调试步骤
方波无感BLDC主要分为三个步骤: 一,转子定位。 二,强拖。 三,切闭环。 出现问题: 一、强拖切闭环不顺畅,会失步。1、频率。2、等待时间不够,过零点检测不稳定就切过去了。 二、调整切换频率 电机失步有2种现象。1、卡死。2、震动。 如果调整的是初始强拖的PWM那么正确值在这两个值中间。如果是卡死就往小了调。如果是震动往大了调。 如果调整的是PH_TIME那么卡死往下调,震动则往上调。实质是什么?值得想一想。 现在存在一个问题PH_TIM已经调很小了。虽然初始PWM已经往上调了,带载启动能力增加了但是带载能力还是感觉弱了,应该还是哪个点没有踩对。 上面问题解决了,强拖带载有点弱,用力按住,就失步了。恒压升频可能不够用。等等试试
[嵌入式]
电子风扇专用无刷直流电机关键技术的研究
    电子风扇是一款针对汽车发动机散热而设计的全自动分阶控制产品,适用于各种型号的客车、城市公交车的发动机散热系统。本产品很好地解决了客车、城市公交车在实际使用中发动机不同温度状况下的散热问题,有效地保证发动机的正常使用温度控制,有效防止车辆在运行过程中由于发动机温度过高而导致的自燃、烧发动机、高能耗等问题,是车载电子风扇的最佳选择。 1 总体控制方案     本文研究的电子风扇采用的是三相异步无刷直流电机,其相对于有刷电机有如下优点:     (1)可以根据冷却水的温度自动调节风扇转速,起到节能效果;     (2)采用无刷控制,延长电机的使用寿命;     (3)电子换相代替机械换相,减少机械磨损等能量损耗;     (4)转
[电源管理]
电子风扇专用<font color='red'>无刷直流电机</font>关键技术的研究
用dsPIC30F3010实现无刷直流电机的无传感器控制
1 引言 无刷直流电机既具有交流电机结构简单、运行可靠、维护方便等优点,又具有直流电机运行效率高、无励磁损耗、调速性能好的特性,因此在各行业中的应用日益广泛。无刷直流电机是一种特殊的永磁同步电机,传统的无刷直流电机大多数采用位置传感器确定转子位置,并据此控制驱动电路换相。由于位置传感器的存在,增加了电机体积和成本,降低了电机可靠性,限制了某些场合的应用。 本文给出一种基于反电动势过零点检测法控制无刷直流电机的实现方法,该方法所需硬件简单。软件功能强大。 2 无刷直流电机的结构 无刷直流电机由电机本体、转子位置检测电路以及电子开关电路3部分组成。其示意图如图1所示。 电子开关电路主要作用是控制电机本体定子各相绕组的通电
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved