针对望远镜机架的电机驱动方案

发布者:ShiningSmile最新更新时间:2016-06-16 来源: 21ic关键字:永磁同步电机  望远镜机 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  目前天文望远镜常用的传动方式主要为蜗轮蜗杆传动、齿轮传动、摩擦传动、和直接驱动等方式。这里采用直接驱动式望远镜机架,采用组合式弧线交流PMSM。直接驱动将电机与负载直接耦合在一起,提高了系统可靠性,但对电机本身运行平稳性及超低速提出了更高的要求。

  电流环在伺服驱动系统中占有重要地位,直接决定伺服系统的好坏,很多文献都对电流采样进行了研究。电流环是望远镜驱动控制系统的内环,电流采样的精度和速度直接影响整个电流环的运算精度,从而对望远镜机架驱动跟踪性能产生重大影响,电流环的设计是保证望远镜跟踪目标的速度精度及力矩平稳性的关键部分。在此设计了基于单电源供电的电流采样电路,并采用TMS320F2812实现电流采样环节的A/D转换,为后续控制器的设计提供了方便。

  2 机架驱动电流采样电路设计

  采用弧线交流PMSM,定子直径为2.5 m,转子直径为2.2 m,15组定子单元,60对极的磁极组成转子,每组定子单元与4对极的转子组成一台弧线型交流PMSM,共由15组单元电机组成。其中任意一台单元电机可独立工作,也可和其中的几台电机一起工作。2.5 m直接驱动电机可驱动口径为4 m的望远镜。电机参数:额定功率3 kW;额定电压380 V;额定电流12 A;额定频率0.533 Hz;转动惯量262.74kg·m2;额定转速4 r·min-1;定子电阻33 Ω;极对数为60。

  目前常用的控制器有单片机、ARM及DSP等数字系统。电机输出的电流是模拟信号,在此选取TMS320F2812实现A/D转换,电流采样电路是单电源供电的TLV2374。根据电机参数,电流传感器采用LTS25-NP。

  2.1 望远镜机架驱动实现总框图

  所设计的电流检测电路将弧线交流PMSM的三相定子电流经电流传感器后进入DSP的A/D口,将其转换为数字信号,便于控制器及逆变器信号的处理。由于弧线电机的定子绕组采用Y接法,则有ic=ia+ib,因此只需要检测其中两相电流,即可得到三相电流。交流PMSM要想实现高性能的闭环控制,电流反馈环节必不可少,只有检测出定子绕组的电流,才能为逆变环节即SVPWM算法的实现提供基础。由PMSM工作原理可知,定子电流检测的精度和实时性是决定整个矢量控制系统精度的关键。

  对于精密弧线电机,驱动望远镜时,闭环才是保证跟踪目标和图像质量的首选控制方式,能实现高精度、高性能的传动和伺服控制。另外,一个完善可靠的驱动系统在硬件上包括过压、欠压、过流保护等各类故障检测和保护电路,这些电路均需检测电机的电压和电流信号。弧线交流PMSM的驱动系统由位置环、速度环、电流环组成,图1示出望远镜机架驱动实现总框图。

  

  2.2 TLV2374电流采样电路设计

  TLV2374器件是单电源供电运算放大器,具有轨对轨的输入输出能力,最低操作供电电压至2.7 V,轨对轨的摆幅输出特性,可提供3 MHz的带宽,仅需550μA的工作电流,最大工作电压可达16 V。经过长时间的研究及实验,这里给出单电源供电的电流采样系统的详细设计过程。

  系统采用的电流传感器IXS25-NP是闭环原理的传感器,5 V单电源供电,使外围的硬件电路设计更简单,无需增加电压抬升电路,从而减少了电源对系统的干扰。该电流传感器温漂小,精度高,采样电阻是内置式的,为电压型输出,避免了出现因增加外接采样电阻及运放后进入DSP使精度有所降低的情况,输出特性曲线如图2所示。

  

  电流传感器的接法共有3种,按其中一种接法,电流传感器的输出电压范围是1.9~3.1 V,该范围的电压不能直接送入到DSP的A/D(0~3 V)进行转换,且电压范围过小,必然降低A/D转换器的转换精度,为充分利用A/D转换器,在此根据实际A/D转换结果,设计了电流采样电路,将满量程时信号的输出范围调整到0~2.8 V,实验证明超过2.8 V将导致有时输出是饱和状态,为预防电路在非正常情况下损坏DSP的A/D接口,电路中增加了限幅电路。设采样电路输入为Uin,范围是1.9~3.1 V,采样电路的输出为Uo,范围是0~2.8 V,设输入输出为线性关系,则有:

  Uo=AUin+B (1)

  根据输入输出之间的关系,计算出A=7/3和B=-133/30,即:

  Uo=7Uin/3-133/30 (2)

  由式(2)知输入输出的实质是由运放构成的减法电路,设计出单电源运放组成的减法电路即可。由于TLV2374是单电源供电,可知其供电电压正电源是5 V,负电源是2.5 V,在此采用电压基准芯片并调整得到2.5 V基准电压,若设电流传感器的输出为Uin1,2.5 V基准电压为Uin2,则有:

  Uo=7Uin1/3-133Uin2/75 (3)

  选择合适的电阻实现该采样电路。图3为电流传感器的检测采样电路,共有4级处理:第1级进行阻抗变换;第2级是二阶有源滤波电路;第3和第4级是上式算出的减法电路,其中,为保证输入输出为式(3)的关系,有意在比例电路部分放置了两个1/1 000的精密可调电阻来调节输入输出的线性关系。需注意在使用单电源供电的运放时,比例增益都是相对同相端的电压而言。

  实际调试中,由于经传感器出来的电流信号有高次谐波及其他干扰信号,因此必需设计硬件滤波器进行抑制,该系统设计的二阶低通滤波器的电流检测电路位于上述情况中的第2级,在此考虑到精密弧线电机的超低速,所设计低通滤波器的截止频率为10 Hz,注意电容值的选取,反相端电容通常是同相端电容的2倍,电流采样电路具体实现如图3所示。

  

  3 A/D校正及电流采样实验结果

  TMS320F2812自带一个12位带流水线的ADC,而A/D转换的精度直接决定控制系统性能的优劣,如芯片内部A/D转换、A/D转换的增益和偏移都能影响ADC最终结果,这些对使用者而言都已无法改变,用户在使用过程中可通过修改外围硬件设计减少输入误差、调节芯片参数减少输入和转换误差、软件滤波减少输出误差及软件校正提高其转换精度。TMS320F2812的ADC转换精度较差的主要原因是存在增益和偏移误差,要提高转换精度就必须对这两种误差进行补偿。

  

  12位的A/D所能表示的数据范围是(0000H~0FFFH),即0~4 095,为充分发挥DSP 16位的特性,将转换结果放在(0000H—FFF0H),即0~65 520。前面已经提到,A/D结果寄存器的值是单极性的数据,而在后续的控制处理程序中,要求转换结果是双极性的数据,对于这种情况,在进行转换时就将其转换成双极性数据。图4为实际采样时理想增益与实际增益模拟量与数字量之间的关系曲线。图中横轴是实际电压,纵轴是转换的数字量,存储在结果寄存器中,实际与理想情况相比存在增益和偏移误差,必须对其校正才能提高其转换精度。根据上述描述,首先编写出校正增益和偏移量的程序,然后用来校正TMS320F2812的其他通道,A/D电流采样总流程如图5所示。

  

  输出的电流由于不可避免地含有噪声,在A/D转换前还必须进行数字滤波,电流采样滤波采用扩展的卡尔曼滤波方法估算实时电流最优化,以提高瞬间电流测试的精度,获得正弦特性的旋转磁场,使PMSM在超低速运行时更平稳。在使用DSP进行A/D转换时,为了提高转换精度,采用校正的方法选取两个基准电压,在此选取0.5 V和2.5 V。基准电压都由上述电压基准芯片提供,校正电路中使用DSP的A/D通道,软件处理使0~.8 V单极性信号直接转换到-1.4~1.4 V的双极性信号,方便了电流环节的信号处理。选取频率为0.2 Hz与2 Hz的信号相比较,两者的转换结果如图6所示,图中横坐标是转换信号的周期,纵坐标是电流信号经传感器后放大电路处理后的电压值。由图可见,硬件电路和软件算法都很好地实现了电流信号的转换。根据实验记录可知,有源滤波电路的截止频率也影响转换结果,如果望远镜的转速很低,在实际应用过程中要考虑降低二阶低通有源滤波器的截止频率。

  4 结论

  鉴于使用的电机是特别定制的直径2.5 m的组合式弧线交流永磁同步电机,市场上现有的驱动板不能使其正常运行。考虑到驱动系统的复杂性,应尽量简化电路,因此采用单电源供电的运算放大器实现电流采样电路,并且电流采样的精度直接决定了望远镜机架运行的稳定性,进而影响望远镜的跟踪和观测质量,因此该电流采样电路的精度要求较高。

关键字:永磁同步电机  望远镜机 引用地址:针对望远镜机架的电机驱动方案

上一篇:基于线性马达的驱动控制方案
下一篇:步进电机在打印机驱动器的应用

推荐阅读最新更新时间:2024-05-03 00:28

永磁同步电机FOC控制的基本原理及Matlab/Simulink仿真分析
前言 做永磁同步电机控制绕不开FOC,本章节主要介绍FOC控制的基本原理、坐标变换以及永磁同步电机在同步旋转坐标系下的数学模型,并通过Matlab/Simulink进行永磁同步电机FOC控制算法的仿真分析。 一、FOC的基本原理 磁场定向控制(Field-Oriented Control,FOC)系统的基本思想是:通过坐标变换,在按转子磁场定向同步旋转坐标系中,得到等效的直流电动机模型,仿照直流电动机的控制方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量反变换得到三相坐标系的对应量,以实施控制,具体流程如下图所示: FOC最重要的原则是:按转子磁场定向,即保持转子磁链旋转矢量始终与dq坐标系下的d轴重合,q轴正交
[嵌入式]
<font color='red'>永磁同步电机</font>FOC控制的基本原理及Matlab/Simulink仿真分析
永磁同步电机矢量控制方案在变频空调风机中的运用
1 引言 变频空调以其节能、室内温度更稳定、噪音低、舒适度更高的特点得到快速的发展,成为今后空调发展趋势已成业界共识。 变频空调一般是指空调压缩机及其风扇的变频控制,多采用永磁同步电机矢量控制的方案。目前空调风机大多还是采用单相交流电机的定频风机,这种单相交流风机接入单相交流电源就可工作,具有结构简单、可靠的优点,但是也有不能进行无极调速和风机效率比较低等缺点。为了进一步提高变频空调性能,当前已有空调厂家开始对空调风机也进行变频控制,真正实现空调的全变频控制。 永磁同步电机(PMSM),功率密度高体积小,结构简单,采用矢量控制(FOC),具有动态响应快,效率高、噪音低及安全可靠的特点,很适合应用在空调风机中,实现空调风机的变频控制,
[嵌入式]
基于交流永磁同步电机的全数字伺服控制系统
摘要:根据永磁同步电机的数学模型和矢量控制原理,通过仿真和实验研究,开发出一套基于DSP控制的伺服系统,并给出了相应的实验结果验证该系统的可行性。 关键词:永磁同步电机;矢量控制;数字信号处理器 引言 目前,交流伺服系统广泛应用于数控机床,机器人等领域,在这些要求高精度,高动态性能以及小体积的场合,应用交流永磁同步电机(PMSM)的伺服系统具有明显优势。PMSM本身不需要励磁电流,在逆变器供电的情况下,不需要阻尼绕组,效率和功率因数都比较高,而且体积较同容量的异步电机小。近几年来,随着微电子和电力电子技术的飞速发展,越来越多的交流伺服系统采用了数字信号处理器(DSP)和智能功率模块(IPM),从而实现了从模拟控制到数字控制
[工业控制]
基于DSP的永磁同步电机全速范围转子定位
永磁同步电机的控制策略,例如矢量控制,需要精确的全速范围内的转子位置进行解耦变换。而其中转子初始位置最为重要,初始位置的误差会影响其后转子位置的计算,从而导致永磁同步电机解耦变换错误,导致无法对电机进行正确控制。针对传统的磁定位法,可能由于电机静止时转子位置位于定位盲区,普通的直流转矩不能使转子旋转到预定位置,使用改进的磁定位法,通过二次直流转矩定位,精确定位转子初始位置。针对传统的M/T算法存在检测时间、误差大的问题,使用改进的M/T算法,缩短了计算时间和提高了计算精度。 1 改进磁定位法原理 磁定位法原理是通过给逆变器发出直流触发脉冲信号,例如图1脉冲信号为(100)输出给电机定子绕组静止的电流矢量。 其产生的
[嵌入式]
串行通信在永磁同步电机控制系统中应用
0 引 言 TMS320LF2407是TI公司开发的、适用于电机控制的数字信号处理器(DSP),在原有DSP内核的基础上添加了脉宽调制(PWM)、A/D、D/A模块,从而实现对电机系统的全数字控制。它在电机控制系统中得到了广泛应用,并取得了明显效果。在开发一套以DSP为核心的永磁同步电机控制系统时,需要及时观察驱动系统中的各个变量,同时还要对一些程序进行控制,修改特定参数。DSP在实际运行中不能用外接的端口进行控制,需要用DSP自带的串行通信模块来解决这一问题。通过一台上位计算机和以DSP为核心的电机控制系统构成整个监控系统,Pc机通过串口来改变DSP程序中转矩、磁链给定,以及调节PI参数等,电机控制系统完成对电机的控制,并采
[嵌入式]
基于MRAS的永磁同步电机矢量控制系统仿真研究
在高性能的交流电机变频调速系统中,不管是采用矢量控制还是直接转矩控制,转速的观测和闭环控制环节是必不可少的。通常,采用光电码盘等速度传感器进行转速检测,并反馈转速信号。但是,速度传感器的安装给系统带来一些缺陷: 1)增加系统的成本,码盘精度越高,价格越贵; 2)码盘在电机轴上的安装存在同心度问题,安装不当将影响测速精度; 3)增加了电机轴向设备,给电机的维护带来一定困难; 4)在恶劣的环境下无法工作,且码盘工作精度易受环境条件的影响。 因此,越来越多的学者将目光投向了无速度传感器控制系统的研究。现今已经有许多方法可以对电机转速进行估计,主要有:基于电动机数学模型计算出转速;利用感应电动势和磁链计算速度;运用模型参考自
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved