计算机视觉下一个技术拐点?前端成像或将开启“视觉2.0时

发布者:Delightful789最新更新时间:2018-03-22 来源: ofweek关键字:计算机视觉  技术拐点  前端成像 手机看文章 扫描二维码
随时随地手机看文章

“计算机视觉的前端成像技术,背后是至少100亿数量级的庞大需求!”

在日前刚结束的2018 AWE现场,身为眼擎科技CEO的朱继志,满怀激动的下了这么一个结论。

朱继志说话的语气非常笃定,因为他们的eyemore X42芯片上市不到两个月,就已一路高歌,初露峥嵘。而业内对eyemore X42的看法是:这款全球第一款完全自主研发并正式对外发布的AI视觉成像芯片将“引领AI机器进入视觉2.0时代”。

既然这款芯片目前在国内甚至全球同领域内属于独一份,好奇之下,我们不禁就和他多聊了几句。

2018将是AI落地第一年,视觉市场规模潜力巨大

近几年,人工智能的火热是毋庸置疑的,上到国家两次将其写入政府工作报告,下到雨后春笋般出现的各种AI公司,所有这些都在昭示着一个崭新的人工智能时代即将到来。

同样的,在众多的AI技术和应用中,计算机视觉是最大的切入点和最具潜力的领域。毕竟,在我们获取的全部信息中,视觉信息的比例达到了80%以上,因此,这将是一个前景无限的市场方向。

计算机视觉的应用领域几乎涵盖了我们所知的所有行业,自动驾驶、金融风控/交易、安防、新零售、智能手机、机器人......

国内计算机视觉领域,商汤和旷世算是两只最大的独角兽,而他们于去年上演的融资竞赛更是吸引了无数业内人士的目光:先是2017年7月,商汤科技B轮融资4.1亿美元,接着道10月31日,旷视科技Face++又宣布获得4.6亿美元C轮融资,随后商汤即传出接受阿里15亿元投资的消息......

不用多说什么,仅从这一连串创纪录的融资金额中,我们就可以感受到计算机视觉在AI界的热度。

据相关研究报告预计,2018年全球计算机视觉市场规模将达到50亿美元左右,而到2020年,中国计算机视觉市场规模将增长至725亿元,未来前景极为广阔。

“2016年是AI的概念年,2017年是demo年,2018年是落地第一年。”朱继志认为,在未来的三年内,AI会很快的实现更为广泛的落地应用 。

“尽管现在整个产业很多技术都还有一些问题,但是其整体架构已经出来了。”朱继志说。

深耕前端成像领域,视觉2.0将为产业生态带来质变

众所周知的是,目前国内AI视觉领域的科技企业,几乎都在使用传统摄像头,都把焦点集中在对图像的后端处理上。这就导致了一个尴尬的现象:绝大多数的AI公司算法足够优秀,但前端成像技术不过硬,导致实际落地时机器的“眼睛”不能适应外界光线变化,识别效果差的尴尬局面。

以自动驾驶汽车为例,在诸如车辆经过隧道、对面驶来的车开大灯、夜间红绿灯被道路景观灯遮挡/干扰、夜色漆黑伸手不见五指等等异常情况下,往往会由于识别不准而发生行车事故;

同样,安防领域也会因为红外黑白画面和逆光的人脸发黑而无法识别、工业检测中会有因为高光和反光导致无法检测的情形等等。


“在复杂的光线环境下,AI机器获取的图像信噪比会受到极大影响,这是导致市场上AI视觉产品难以落地的最大原因。”朱继志认为,要彻底解决这一难题,关键在于做好AI视觉产品的前端成像。

要克服AI机器在复杂光线下的图像识别,就要首先解决图像的获取和前端处理。目前,业内主流的解决方案有3种。

第一种就是我们所熟知的激光雷达,在光线不好的情况下,通过主动发射激光并利用光线反射来获取物体的图像和三维信息。激光雷达的优点非常明显,它可以获得极高的角度、距离和速度分辨率,同时也具有良好的抗干扰能力。

不过,受限于巨大的体积和昂贵的价格(各类32线、42线、64线等型号产品,价格动辄数万数十万甚至上百万,虽然在持续降低,但依然不亲民),它正在被边缘化。正如马斯克所说的,“激光雷达就像一根拐杖”。这个比喻很恰当,视觉能力不行的时候,需要依靠激光雷达这样的拐杖,但拿着拐杖却是永远跑不快的。

剩下的两种方案则都是在相机和成像处理的基础上加以改进。首先是阵列计算相机技术,原理有点类似于蜻蜓、苍蝇等多目昆虫的复眼,通过数个、数十个甚至上百个相机组成的阵列,拍摄出拥有亿级以上像素的动态图像,为AI机器提供视觉支持。

目前,这一技术尚在研发阶段,受限于体积和供应链的制约,其产品也还处在落地的早期阶段。

第三种方案,即是眼擎科技所做的,AI视觉前端成像引擎芯片eyemore X42。

据朱继志介绍说,眼擎所做的这种方式,像人的眼睛一样,核心是把人的眼睛视力弄好——解决AI机器在各种光线下自动适应光线的能力。

“我们坚信,以后AI机器的眼睛应该和我们人类一样,以后它们的视力一定不会比人眼差,甚至比人眼强。这就是我们创业的初衷,我们要从根本上解决AI的视力问题。”

眼擎eyemore X42芯片,视觉2.0时代的AI机器成像引擎

关于AI视觉,马斯克曾经提出过“全天候被动光学图像识别”的概念,就是要解决复杂光线,包括弱光、逆光、反光下的精准识别,这也是AI机器要解决的刚需问题。眼擎科技把这种自动适应光线的视觉,称之为“视觉2.0”。

2018年1月19日下午,在2018极客公园创新大会上,国内AI视觉成像芯片科技公司眼擎科技正式对外发布“eyemore X42”芯片。据悉,eyemore X42是全球第一款完全自主研发并正式对外发布的AI视觉成像芯片。

数据显示,eyemore X42成像引擎芯片,拥有比传统ISP高20倍的计算能力,采用了20多种新的成像算法,集成了超过500种不同场景下的复杂光线数据。

eyemore X42芯片有三个特点:首先它是一颗独立成像芯片。目前各种相机、智能手机、摄像头里都有成像功能,但都是被集成在主芯片里面的,只能叫集成成像。而eyemore X42整颗芯片只专注于一件事情,那就是成像。这有点像Intel的CPU带了集成显卡功能,但我们知道,只有像NVIdia的专用GPU才一定是未来的主流。


第二个特点,eyemore X42抛弃了传统的ISP成像架构,采用了全新的成像引擎架构,来解决复杂光线下的成像难题。而传统的ISP,从架构上来讲,无论如何也无法完美解决复杂光线的问题。

第三个特点是,eyemore X42提供了丰富的API接口,让做后端图像识别的算法工程师,可以很方便的控制成像的过程。

eyemore X42的性能有多强大?也许其发布会当天现场演示的“微光/暗光环境下实现精准识别”的实验,就能很好的说明问题。

“如果你问所谓的微光会微到什么程度?这个很简单,我们有一个基本的标准,就是和人眼比,我们就是要超越人眼”,朱继志说到。

人眼的视网膜里有大约1.25亿个视杆细胞和视锥细胞,它们扮演感光器的角色。其中,视杆细胞感知光线的明暗,而视锥细胞负责感知颜色。到光线的明暗达到一定程度(过亮或过暗)的时候,视锥细胞就停止工作,转而切换到视杆细胞,因此这时人眼就只能感受到黑白的灰度,暂时失去了感知颜色的能力。

“我们现在做的事情是比人眼18个DB的八倍,在那种情况下。所以,在人眼看不清颜色、只能看清轮廓的情况下,我们能够精准的还原颜色。”

人对世界颜色的感知能力是有限的,虽然理论上说人的眼睛可以分辨出出高达1200万种颜色,但实际上远远低于这个数字。但机器能不能分辨出一百万种、一千万种甚至更多种颜色呢?这完全有可能。

我们很难想象的到,一个机器超越人眼之后可以做些什么。高维视觉和低维视觉相比,具有无可比拟的优越性。

比如看到一朵花,我们看到的只是白色的,但机器看到的是五颜六色的,因为可能有100种白。这就是机器进步的核心能力,能够看到更多的信息,所以能够给出更精准的反馈。

AI实体化之下,5年内视觉芯片将有100亿数量级需求

随着AI技术的进一步发展和应用的持续扩大,各种由AI芯片驱动的机器/设备持续出现,使得AI已经越来越呈现出实体化的趋势。

“得益于人工智能的广泛应用,目前已经形成了一个很大的技术生态。在这个庞大的生态海洋里,AI机器这个新的物种已经开始进化出来,这些AI机器将会迅速进入我们的现实世界。”朱继志说。

AI机器区别于一般机器的最大特点是,它不是一个普通的工具,它自己有大脑。我们可以把自动驾驶、机器人、包括工艺检测设备、智能的安防摄像头/门禁/锁具等等,都看做一个AI的机器。

另一方面,从信息时代发展到如今的AI时代,竞争核心已经从加工制造工艺/硬件设备性能的竞争,升级为算力和算法的比拼。由此,作为算法和算力承载的芯片,就成了当今时代最大的竞争焦点。

而AI机器需要数量更多的、性能更强大的芯片,即各种AI芯片。

“AI机器这个新物种,就是被各种芯片所驱动的。在比拼算法和算力的时代,一个AI机器所需要的芯片的数量,也就是芯片的密度,会呈现数量级的增长。”

以目前突然蹿红的比特币为例,其挖矿的设备——矿机,就是芯片的需求大户。在一个普通的矿机里,就会有几十到数百颗处理器芯片,而这个在以前是不可能想象的。

除此之外,基于万物互联场景下的自动驾驶汽车,它的视觉系统、路径规划系统、车内温度调节、对外通讯通信等等,每一个独立的处理单元都至少需要一颗芯片;同样的还有各种机器人、各种无人机、安防监控、无人超市......

朱继志认为,以后一台AI机器对各种各样的芯片的需求,会有成百上千个。在视觉2.0的内因驱动下,各类AI芯片的大规模应用时代已然来临,AI机器这个新物种,将为AI芯片开辟一个庞大的新增市场。

AI机器对视觉器官的需求量同样是巨大的,由此AI视觉芯片的供应量也将随之激增。

在汽车领域,一台自动驾驶的汽车,将会安装10个视觉摄像头;在安防领域,所有的监控摄像头,都面临着人脸识别的升级;在工业设备领域,通过视觉的方式进行产品的检测,将会成为每一条产线的标配,以后每一条产线上都将配置超过10个智能摄像头;在无人零售,如Amazon go正在把关注的重点从商品的标签迁移到每个顾客的消费习惯,它的每家无人零售店都配置了超过100个以上的摄像头。

据不完全预测,未来5年内,各种各样的AI机器将会带来100亿数量级的视觉设备需求,而视觉芯片的需求量将高于这个数字。

“这将是所有AI芯片创业者的机会。”


关键字:计算机视觉  技术拐点  前端成像 引用地址:计算机视觉下一个技术拐点?前端成像或将开启“视觉2.0时

上一篇:AIoT智能物联网公司小葱智能获天使轮融资
下一篇:真正的大厨 卡利堡推出厨艺机器人

推荐阅读最新更新时间:2024-05-03 02:38

2018年人工智能发展趋势分析 计算机视觉是最热门技术
  随着 人工智能 在我国移动互联网、智能家居等领域的发展,我国 人工智能 产业持续高速成长。由于人工智能产业链包含的环节较多,从基础技术层的数据平台、数据存储以及数据挖掘等,人工智能技术层的语音识别、自然语言处理、图像识别和生物识别等,到人用智能应用层的工业4.0、无人驾驶汽车、智能家居、智能金融、智慧医疗、智能营销、智能教育以及智能农业等等,因此,对于人工智能核心产业到底包含哪些、统计人工智能规模的时候是否包含AI+产业……等等问题,国内外权威研究机构尚未有统一的口径和标准。下面就随网络通信小编一起来了解一下相关内容吧。   这也造成各大机构对我国人工智能规模到底有多大这个问题的解读差异较大,从100亿、200亿到700亿,
[网络通信]
2018中国计算机视觉技术和应用创新国际峰会即将盛大开幕!
由上海希为投资管理有限公司(ECV International)主办的2018中国计算机视觉技术和应用创新国际峰会将于9月11-12日在上海举行,届时将汇集大约150位来自全球的视觉技术行业的专家和领先企业高管,共同讨论视觉技术行业的硬件软件创新,未来的应用发展。 视觉技术是21世纪人类最伟大技术之一。人们感知外界信息的80%是通过眼睛获得的,图像包含的信息量是较巨大的。随着工业4.0时代的到来,视觉技术已越来越重要。 如今,计算机视觉和机器视觉等技术的不断创新,推动了自动化工业,智慧安防以及人工智能等行业的进步。视觉技术的发展为这项技术所能应用的领域也带来了更多发展潜力与机会。 随着计算机视觉技术的逐渐成熟,除
[网络通信]
2018中国<font color='red'>计算机视觉</font><font color='red'>技术</font>和应用创新国际峰会即将盛大开幕!
基于计算机视觉和模糊控制技术的自动对版系统
    摘要: 介绍一种基于计算机视觉和模糊控制技术的彩色印刷对版系统。给出了计算机视觉图像处理和对偏差及偏差的变化量进行模糊处理的方法及系统的控制框图。     关键词: 彩色印刷 计算机视觉 图像处理 模糊控制 在凹版印刷过程中,不同色版之间套印的准确性对印刷质量的影响非常大。笔者设计了一种基于计算机视觉和模糊控制技术的凹印彩色自动对版系统,取得了很好的效果。 1 系统概述 彩色印刷时,在每一个色版画面的边缘都印有一条标志线。不同色版之间两条标志线的距离为20mm。检测两条标志线套印的实际距离,就可以测得两色套印的对版误差,并可进一步利用它进行对版。 图1是系统的原理框图。版辊1和2是两个不同
[传感技术]
英特尔和高通竞相将计算机视觉引入手机和无人机
上周,在英特尔(Intel)开发者大会上,首席执行官布莱恩 科兹安尼克(Brian Krzanich)宣布,该公司正在与谷歌(Google)的 探戈项目 (Project Tango)合作给安卓智能手机带来深度感知能力。台上的一个演示视频显示了配备英特尔RealSense摄像头的手机如何在短短几秒钟内完成对客厅的 3D扫描。表现干净利落,甚至可能让英特尔有机会最终打入移动领域。 但问题是,高通(Qualcomm)已经先人一步。几个月前,在谷歌的开发者大会上,高通为配备自己公司骁龙移动处理器的手机推出了自己的深度感知参考设计。 显然,英特尔和高通都认为计算机视觉领域很快将有大事发生。计算机视觉是指计算机如何处理和理
[工业控制]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved