基于IEEE802.11b的EPA温度变送器设计

发布者:WhisperingSoul最新更新时间:2007-03-09 手机看文章 扫描二维码
随时随地手机看文章
摘要:介绍一种基于IEEE80211b的EPA温度变送器的设计方案,阐述系统硬件和软件结构,说明嵌入式Linux系统中驱动程序的开发过程。系统以S3C2410为核心器件,可以很好地完成温度数据的采集处理,并可以通过IEEE80211b接入点与相关设备进行通信,且在基于EPA标准的无线局域网系统中进行了测试。 关键词:EPA IEEE802.11b 嵌入式Linux 温度变送器 [b]引言 [/b]IEEE802.11是IEEE无线局域网标准,主要用于用户终端的无线接入。IEEE802.11只规定了开放式系统互联参考模型的物理层和介质访问子层,其MAC层利用载波监听多路访问/冲突避免(CSMA/CA)协议;定义了单一的MAC层和多样的物理层,其物理层标准主要有IEEE802.11b、IEEE80211a和IEEE80211g。IEEE802.11b标准是IEEE802.11协议标准的扩展,最高可以支持11 Mbps的数据速率,运行在2.4 GHz的ISM频段上,采用的调制技术是CCK,支持数据业务。   本文详细分析了采用S3C2410处理器平台具体实现运用于EPA网络的IEEE802.11b无线实时温度采集器的开发流程,并对串口通信的调试手段及常见问题进行了探讨。 1 温度变送器的硬件设计   温度变送器系统平台硬件系统功能如图1所示。该平台的核心器件是Samsung公司的处理器S3C2410,外部扩展了16 MB、16位的Flash内存和64 MB、32位的SDRAM。处理器S3C2410通过UART接口和温度变送器相连,通过USB接口和一个IEEE802.11b网络接口卡相连,通过RS232串口和外部PC相连。温度变送器采集到的温度数据输入系统缓冲区中,处理器S3C2410可对缓冲数据直接进行相关处理;处理后的数据可以通过RS232串口传送给外部宿主机PC,也可通过IEEE802.11b网络接口卡发送到无线局域网上。   S3C2410处理器功能十分强大,资源丰富。它内部集成了ARM公司的32位微处理器ARM920T,主频最高可达203 MHz,具有独立的16 KB指令Cache和16 KB数据Cache,还有LCD控制器、RAM控制器、NAND闪存控制器、3路UART、4路DMA、4路带PWM的Timer、并行I/O口、8路10位ADC、触摸屏接口、2个USB接口控制器和2路SPI。   从外部温度传感器采集到的数据经S3C2410 CPU数据处理模块传回到IEEE802.11b USB接口卡;IEEE802.11b的无线通信模块经IEEE802.11b的接入点传到外部以太网络中。 图1硬件系统功能 2 温度变送器的软件系统设计   温度变送器软件系统设计流程如图2所示。系统分3步实现:① 为温度变送器编写内核驱动程序;② 编写温度数据采集应用程序,通过串口获取温度数据并进行相应的EPA报文打包处理;③ 利用无线网络将处理数据发送给上位机。前面提到系统平台上运行的是ARM Linux。在启动后启用了MMU,系统进入保护模式,所以应用程序不能直接读/写外设的I/O区域(包括I/O端口和I/O内存)。这时一般要借助于该外设的驱动来进入内核态完成这项工作。 图2软件系统设计流程 2.1 串口的驱动实现   在Linux下,设备驱动程序可以看成Linux内核与外部设备之间的接口。设备驱动程序向应用程序屏蔽了硬件实现上的细节,使得应用程序可以像操作普通文件一样来操作外部设备,可以使用和操作文件中相同的、标准的系统调用接口函数来完成对硬件设备的打开、关闭、读/写以及I/O控制操作; 而驱动程序的主要任务也就是要实现这些系统调用函数。本系统平台使用的嵌入式ARM Linux系统在内核主要功能上与Linux操作系统没有本质区别,所以驱动程序要完成的任务也一样;只是编译时使用的编译器、部分头文件和库文件等要涉及具体处理器体系结构, 这些都可在Makefile文件中具体指定。当应用程序对设备文件进行诸如open、close、read、write等系统调用操作时,Linux内核将通过file_operations结构访问驱动程序提供的函数。例如,当应用程序对设备文件执行读操作时, 内核将调用file_operations结构中的read函数。在系统平台上对串口数码摄像头驱动,首先把串口驱动模块静态编译进内核,使平台支持串口;再在须使用温度采集时,使用insmode动态加载其驱动模块。这样温度传感器就可正常工作了,接着进行下一步——对温度的采集编程。 2.2 温度数据采集模块   在温度变送器串口被驱动后,需要再编写一个采集温度的应用程序。根据嵌入式系统开发特征,先在宿主机上流程编写应用程序;再使用交叉编译器进行编译、链接,生成目标平台的可执行文件。宿主机与目标板通信采用打印终端的方式进行交叉调试, 成功后移植到目标平台。编写采集程序是在安装Linux操作系统的宿主PC机上进行的,其程序流程如图3所示。 图3温度数据采集程序   程序运行流程如下:   ① 初始化设备功能,发送03H给温度变送器。如果初始化失败,则重复发送初始化功能码2次,若都失败则返回;若成功则进入下一步。   ② 进行数据查询,查询消息中的功能代码告之被选中的从设备要实现何种功能。数据段包含了从设备要实现功能的任何附加信息,即读取或修改的起始地址以及数据数量。CRC校验为从设备提供了一种验证消息内容是否正确的方法。   ③ 如果从设备产生一个正常的响应,则响应消息中的功能代码是查询消息中的功能代码的回应。数据段包括了从设备收集的数据。如果有错误发生,则从设备将修改功能代码以表明此回应是一个异常的回应;同时数据段中包含相应的错误代码,CRC校验用于主设备判断响应帧内容的正确性。   ④ 将从设备得到的数据运用EPA协议栈进行数据的封装,然后通过IEEE802.11b无线网卡发送到数据分析设备。   ⑤ 根据对数据的处理,将得到返回的数据,程序再将返回数据写入从设备。如果写入失败,则连续写两次,若仍失败则跳出。   系统采用主从通信技术, S3C2410处理器模块作为主设备,温度传感器作为从设备。主设备可以对温度传感器进行初始化,并发出查询指令;温度传感器根据主设备查询指令实现相应的功能。S3C2410处理器模块查询的格式包括功能代码、所有要发送的数据和CRC校验域;从设备回应消息也包括相应的功能代码、任何要返回的数据和CRC校验域。如果在消息接收过程中发生错误,从设备将构造一错误帧并将其作为应答回应。程序中构造的帧格式如下:   主设备查询帧   从设备响应帧   当主设备查询从设备时,它希望得到从设备的正常响应,但可能有3种处理情形:   ① 从设备收到了主设备的查询,且全部校验正确,从设备就产生正确的响应。   ② 从设备由于通信错误等没有收到主设备的查询,因此也就无法产生响应。这时主设备将通过超时判断查询的错误。   ③ 从设备收到了主设备的查询,但检测出通信帧内容出错(如CRC校验出错或非法的起始地址等),这时从设备将产生异常响应通知主设备相关的错误信息。   最后将采集数据用EPA协议栈打包,并利用无线网络进行传输。 2.3 无线网络模块   无线温度变换器的实时数据无线网络模块是将无线网卡注入内核,“插槽”驱动层通过API为PC卡服务层提供服务,编写“插槽”层驱动就是实现这些API函数。PC卡服务层维护着一张函数表,记录已登记的“插槽”驱动层的API函数,相应地提供了两个接口函数用来登记和取消登记一个“插槽”驱动层的API函数。定义如下:   int register_ss_entry(int nsock, ss_entry_t ss_entry);   int unregister_ss_entry(int nsock, ss_entry_t ss_entry);   typedef int (*ss_entry_t)(u_int sock, u_int cmd, void *arg);   ◆ 函数register_ss_entry: 用来登记一个“插槽”驱动层服务函数。   ◆ 函数unregister_ss_entry: 用来取消指定函数的登记,表明“插槽”层不再提供该服务。   ◆ 具体服务函数ss_sentry: 该函数的编写是核心。它包括3个参数: 第1个参数sock是插槽编号;第2个参数cmd是命令,即服务函数的编码;第3个参数是一个void类型的指针,用来传递任意的参数。   PCMCIA“卡和插槽服务”(Card and Socket Services)软件规范要求插槽层提供的服务共有12项,Linux操作系统定义在includepcmciass.h文件里。   enum ss_service {     SS_RegisterCallback, SS_InquireSocket,     SS_GetStatus, SS_GetSocket, SS_SetSocket,     SS_GetIOMap, SS_SetIOMap, SS_GetMemMap, SS_SetMemMap,     SS_GetBridge, SS_SetBridge, SS_ProcSetup   }; 3 测试   首先在宿主机PC上使用交叉编译器编译、链接温度数据采集程序,使之生成可执行代码,然后移植到目标平台上。为了进一步观察采集的温度数据效果,可在目标平台带网络支持的基础上编写一个网络通信程序,把采集到并处理成浮点型的温度数据通过网络传输到PC机上进行显示。搭建无线温度变送器的测试系统如图4所示。 图4IEEE802.11b   无线温度变送器的测试系统无线监控系统采集的基于S3C2410的IEEE802.11b无线温度变送器的实时数据如图5所示。 图5IEEE802.11b 4 结论   实际的温度测量数据表明,基于IEEE802.11b的EPA温度数据采集器可以很好地完成温度数据的采集处理,并通过无线接入点与相关设备进行通信。另外,在基于EPA标准的无线局域网系统应用中,验证了此设计的可行性。 [b]参考文献 [/b][1] Tanenbaum Andrew S. Modern Operating System. 北京:机械工业出版社,2002. [2] 邹思轶. 嵌入式Linux设计与应用. 北京:清华大学出版社,2002. [3] Karim Yagbmour. 构建嵌入式Linux系统. 北京:中国电力出版社, 2004. [4] Sloss Anddrew N. Dominic Symes. ARM嵌入式系统开发——软件设计与优化. 北京:北京航空航天大学出版社,2005. [5] 毛德操,胡希明. Linux内核源代码情景分析. 杭州:浙江大学出版社,2001. [6] Mark Ciampa. 无线局域网设计与实现. 北京:科学出版社,2003. [7] 国家质量技术监督局. 中华人民共和国国家标准“用于工业测量与控制系统的EPA系统结构与通信规范”(报批稿). 2005.
引用地址:基于IEEE802.11b的EPA温度变送器设计

上一篇:基于RTOS的智能交通灯设计方法
下一篇:基于事件一目标驱动的人机界面设计

小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved