基于步进电机驱动芯片和核步法实现闭环控制电路的设计

发布者:sokaku最新更新时间:2021-10-20 来源: elecfans关键字:步进电机  驱动芯片  闭环控制电路 手机看文章 扫描二维码
随时随地手机看文章

步进电机是将电脉冲信号转换成角位移或线位移的一种装置。它产生的位移与输入脉冲数严格成正比,平均转速与输入脉冲的频率成正比,具有结构简单、可靠性高和成本低的特点。由于步进电机没有积累误差,容易实现较高精度的位移和速度控制,被广泛用于精确控制领域。由步进电机与驱动电路组成的开环数控系统简单并且价格低廉,但有时存在振荡和失步现象,故在复杂电磁环境下或是对精度要求较高的场合下,必须加入反馈电路组成高性能的闭环数控系统。本文采用旋转编码器作为反馈器件对步进电机实行闭环控制。


1THB6064H简介

THB6064H是在东芝公司2009年主推的TB6560AHQ的基础上开发的一款PWM斩波型两相步进电机驱动芯片。该芯片配合简单的外围电路即可设计出高性能、多细分、大电流的驱动电路,在低成本、低振动、低噪声、高速度的设计中应用效果较佳。其主要参数和性能指标有:双全桥 MOSFET 驱动,低导通电阻 Ron=0.4 Ω(上桥+下桥),高耐压 50 V DC,大电流 4.5 A(峰值);多种细分可选(1/2、1/8、1/10、1/16、1/20、1/32、1/40、1/64),自动半流锁定功能,衰减方式连续可调;内置高温保护及过流保护,当温度高于170 ℃时自动断开所有输出;封装形式为HZIP25P1.27封装。


2、控制原理

本文的步进电机闭环控制方法采用核步法。核步法的控制思想是从简化控制系统出发,利用核步计数器对系统位置进行跟踪监视,即时发出反馈控制信号,从而完成对位置的控制。其基本原理如图1所示。单片机接收来自上位机的时序脉冲信号和方向信号,经驱动放大后送往步进电机来控制步进电机工作;步进电机带动编码器同轴旋转,由编码器检测转角度,并以脉冲的形式反馈到单片机进行核步计数;单片机根据脉冲反馈当量值与给定值进行比较,按照核步算法发出控制指令。如果发生丢步,单片机就会根据差值继续发送脉冲,把丢掉的步数补上,从而完成步进电机转动位置的闭环控制。

基于步进电机驱动芯片和核步法实现闭环控制电路的设计

图1闭环控制原理示意图


3、硬件设计

3.1驱动部分电路

驱动电路以步进电机驱动芯片THB6064H为核心,配合简单的外围电路实现步进电机的驱动。驱动电路如图2所示。

基于步进电机驱动芯片和核步法实现闭环控制电路的设计

图2驱动电路

驱动电源的电压最高不能超过50 V,要大于芯片逻辑电压。提高驱动电压可使电机在高频范围转矩增大,电压大小要根据使用情况来选择。VMA、VMB端口是步进电机的驱动电源引脚,设计时应接入瓷片去耦电容和电解电容用来稳压。OUT1A、OUT2A、OUT1B、OUT2B 端口分别为步进电机的2相输出接口,由于此芯片内集成了续流二极管,不用像以前的一些驱动芯片那样在输出口外接二极管,因此就可以使电路板的布线空间缩小,从而减小控制器的体积。NFA、NFB端口分别为步进电机A、B两相的相电流检测端,应连接大功率检测电阻,典型值为025 Ω/2 W。VREF为电流设定端,调整此端电压就可以设定驱动电流的大小。PGNDA、PGNDB、SGND分别为步进电机驱动的引脚地和逻辑电源地。芯片的逻辑电源为5 V,VDD端口为逻辑电源引脚,设计时也要接入电容来减小干扰噪声;alert为过流保护输出端;RESET为芯片复位脚,低电平有效;OSC1A、OSC1B端口所接电容的大小决定了斩波器频率,推荐接入100~1 000 pF的电容,此时的斩波频率为400~44 kHz;M1、M2、M3端口分别为步进电机驱动的细分设置引脚,用外接拨码开关可设定不同的细分值,例如整步、1/2步、1/4步、1/8步等,最高可达64细分。由于步进电机在低频工作时,可能会伴有较大的振动和较大的噪声,这些就需要通过细分驱动来解决。驱动输出的电流调节和衰减方式调节都可通过外接拨码开关来实现,电路简单,方便可靠。


3.2反馈控制电路

电路的反馈环节选用增量型旋转编码器与步进电机固定同轴旋转,产生反馈脉冲信号,发送到单片机,经单片机处理后获得步进电机的旋转信息。


3.2.1旋转编码器的工作原理

旋转编码器是一种集光、机、电于一体的转速、位移传感器,具有高频响、分辨能力高、力矩小、耗能低、性能可靠、使用寿命长等优点。旋转编码器包括码盘(编码盘的线数不同)、发光元件、接收元件和信号处理部分。码盘的线数决定了其精度。当步进电机带动码盘旋转时,因刻线处透光,间隔处不透光,透过的光被接收元件接收并输入到信号处理部分,产生脉冲信号输出。旋转编码器一般分为增量式和绝对式:增量式旋转编码器输出脉冲供后续电路计数和旋转方向的判断,能够实现多圈无限累计测量;绝对式旋转编码器以代码的形式输出来表示当前的位置,转动方向是通过代码的变化趋势来确定的[4]。一般相同分辨率的编码器,增量式的要比绝对式的便宜,实际应用中,增量式旋转编码器应用更为广泛。本文选用增量型旋转编码器,有三根信号输出线A相、B相、Z相。当编码器转动时A、B两根线都产生脉冲输出,A、B两相脉冲相差90°相位角,由此可测出编码器的转动方向与电机转速。当正转时,A相脉冲比B相脉冲超前90°,反转时A相比B相落后90°。A相用来测量脉冲个数,B相与A相配合就可测量出转动方向。Z相为零脉冲线,光电编码器在每转一圈的固定位置产生一个脉冲,主要用作计数和基准点定位,一般可以不用该相。


3.2.2控制电路

控制部分电路是以51单片机为控制核心,接收上位机的脉冲信号和方向信号CLK1和CW1经过存储处理后发送给驱动电路部分驱动步进电机工作。另外,单片机还要实时接收来自旋转编码器的反馈脉冲信号,对编码器的两相反馈脉冲信号进行处理,判断步进电机的位置和旋转方向是否与给定信息相符合,如果不相符就调用相应的算法进行自动补偿,最终使步进电机达到预定的位置。由于旋转编码器的分辨率有高有低,如果选择高分辨率的旋转编码器,在细分情况下,当步进电机在最高转速时,要求单片机的相应速度要符合要求。本设计选用的单片机为宏晶科技的STC12C5201单片机,1个时钟/机器周期,增强型8051内核,速度比普通8051快8~12倍。一般程序稍大的可选用STC12C5202或者STC12C5204。编码器与STC12C5201的接口如图3所示。

基于步进电机驱动芯片和核步法实现闭环控制电路的设计

图3编码器与单片机接口

需要注意的是,上位机向单片机发送控制信号的时候要经过光耦隔离。光耦隔离的作用有两个:第一,防止电机干扰和损坏前级芯片;第二,对控制信号进行整形。对于控制信号CLK和CW/CCW要选用中速或者高速的光耦,以保证信号经过光耦后不会发生延迟或者变形而影响步进电机的驱动。


4、软件设计

软件设计中初始化设置要定义各端口的功能,电机的初始化主要是运行前设置端口的I/O方向,确定所选择的细分驱动方式等。之后,要实时获得电机的工作状态和驱动电机运转,并在中断服务程序中处理电机的丢步和转向控制。现代单片机运行速度都很快,所以对编码器采用软件鉴相,既简化电路结构,又节约成本。将编码器的A相与单片机的外部中断INT0相连,B相与普通I/O口的P1.0相连。由于编码器的A相与B相在输出上有固定的相位关系,正转与反转时编码器的A、B两相的电平信号不同,正转时,每当A相出现高电平的前四分之一周期时,B相为高电平;反转时,每当A相出现高电平的前四分之一周期时,B相为低电平。因此,单片机使用外部中断0来处理编码器数据,把编码器的A相接中断源。在中断服务程序中,程序通过读取B相(P1.0口)的状态来确定编码器的转向,进而完成加1或者减1的双向计数。软件程序流程如图4所示。

图4软件程序流程


结语

本文提出了基于驱动芯片THB6064H的步进电机闭环控制电路设计方案。硬件设计将低成本的51单片机与步进电机专用驱动芯片一体化(目前基本都是分立开的),既可以实现所需功能,又能降低成本。该电路结构简单、动态特性好、适应性强、速度快、精度高、性能稳定。采用编码器作为位置反馈,既能使步进电机达到伺服电机的高速度、高精度效果,又能降低成本,在各种车床、切割机、雕刻机等数控场合有很高的实用价值。

关键字:步进电机  驱动芯片  闭环控制电路 引用地址:基于步进电机驱动芯片和核步法实现闭环控制电路的设计

上一篇:机载大功率射频同轴继电器的工作原理及设计方案分析
下一篇:半导体制造企业如何践行和评价可持续发展效果?

推荐阅读最新更新时间:2024-11-03 20:48

汽车动力系统LIN步进电机驱动器解决方案
步进电机驱动系统是由步进电机和步进电机驱动器构成的。步进电机驱动系统的性能不但取决于步进电机自身的性能,更取决于步进电机驱动器的优劣。同时,对步进电机驱动器的研究与步进电机的研究几乎是同步的,因而步进电机驱动器在汽车动力系统中有着重要的地位。 步进电机驱动器细分的主要作用是提高步进电机的精确率。国内有一些驱动器采用“平滑”来取代细分,有的亦称为细分,但这不是真正的细分,本质不同。 1.“平滑”并不精确控制电机的相电流,只是把电流的变化率变缓一些,所以“平滑”并不产生微步,而细分的微步是可以用来精确定位的。 2.电机的相电流被平滑后,会引起电机力矩的下降,而细分控制不但不会引起电机力矩的下降,相反,力矩会有所增加。
[嵌入式]
STM32C8T6控制步进电机
STM32C8T6发送控制信号给电机驱动,电机驱动控制步进电机。 电机驱动:控制一个步进电机转动,使用一路PWM信号和一路方向信号,根据pwm信号的频率控制步进电机的转速,方向信号控制步进转动的方向。 void SteppingMotor_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); RCC_APB2
[单片机]
步进电机变频技术的应用
  航海罗经模拟器的组成结构原理是:船舶舵轮的转动引起了船舶航向的改变,同时也就引起了船舶罗经读数的变化。当罗经模拟器要求转动的角度偏大时,设计应用变频转动的方法来克服转动时间过长的缺点,也就是给出一个具体需要转动的航向值,该模拟器能够迅速有效地按照要求转到该值。 步进电机的选用与设计   步进电机具有转矩大、惯性小、响应频率高等优点,具有瞬间起动与急速停止的优越特性。与其他驱动元件相比,有明显优点:通常不需要反馈就能对位移或速度进行精确控制;输出的转角或位移精度高,误差不会积累;控制系统结构简单,与数字设备兼容,价格便宜。它每转一周有固定步数,能够精确控制步进和接收数字量。为了便于数据的处理和驱动,设计了由步进电机带动减速齿轮,再
[嵌入式]
澜起科技推出全球首颗第二代DDR4的寄存时钟驱动芯片
        中国上海,2014年10月27日(GLOBE NEWSWIRE) 澜起科技集团有限公司,专注于为家庭娱乐和云计算市场提供以芯片为基础的全方位解决方案的全球无晶圆厂供应商,今天宣布推出全球首颗第二代DDR4寄存时钟驱动器芯片(DDR4RCD02)。  DDR4RCD02芯片完全符合最新的JEDEC DDR4RCD02规范,支持2667MHz及以上的时钟频率。该芯片在性能和速度较其最高支持DDR4-2400的第一代DDR4寄存时钟驱动芯片(DDR4RCD01)有显著改善。目前澜起科技已经将DDR4RCD02工程样片交给客户,供其开发支持第二代DDR4 RDIMM和LRDIMM模式的应用程序。 “我们
[手机便携]
基于单片机的步进电机控制系统设计
单片机实现的步进电机控制系统具有成本低、使用灵活的特点,广泛应用于数控机床、机器人,定量进给、工业自动控制以及各种可控的有定位要求的机械工具等应用领域。步进电机是数字控制电机,将脉冲信号转换成角位移,电机的转速、停止的位置取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,非超载状态下,根据上述线性关系,再加上步进电机只有周期性误差而无累积误差,因此步进电机适用于单片机控制。步进电机通过输入脉冲信号进行控制,即电机的总转动角度由输入脉冲总数决定,而电机的转速由脉冲信号频率决定。步进电机的驱动电路是根据单片机产生的控制信号进行工作。因此,单片机通过向步进电机驱动电路发送控制信号就能实现对步进电机的控制。 1 系统设计原理 步进
[单片机]
基于单片机的<font color='red'>步进电机</font>控制系统设计
步进电机工作原理_步进电机三种控制方式
  步进电机工作原理   步进电机是一种特殊的电机,通过逐步变化电磁场的方向和大小来实现旋转运动,可以控制角度和转速。其工作原理如下:   步进电机通常由定子和转子两部分组成。定子上有多个电磁线圈,电磁线圈中的电流会产生磁场。转子上则有多个磁极,磁极的极性和方向与定子的电磁场相对应。定子和转子之间通过空气隙隔开,空气隙非常小,通常只有几微米到数十微米。   当给定子中的一个电磁线圈通电时,该线圈会产生一个磁场。转子上的磁极会被吸引到这个磁场,使得转子旋转一个固定的角度。当定子中的电磁线圈电流改变方向时,转子也会随之改变方向。通过逐步改变电磁场的方向和大小,就可以实现精确的转动控制。   步进电机的步进角度与电磁线圈的数
[嵌入式]
摄像机运动控制系统方案
  引言   采用单片机为核心设计的云台控制器在监控场合能实现控制摄像机进行大范围、宽角度的移动,以使摄像机能够达到接近360°全景式摄像,且其在经济性、灵活性、扩展性和可维护性等方面都具有独特的优势。   1 系统总体结构   系统由以下几部分构成:①单片机:设计的核心,在软件的配合下实现对键盘所输入信息的识别,根据输入信息向云台中的步进电机发出指令,使其实现正/ 反转、速度控制、程序控制等功能,并将步进电机的转速通过数码管显示出来;②步进电机及驱动:负责云台系统在竖直和水平两个方向上的转动,是系统的执行部件;③键盘:外部信息的输入器件,是控制人员指挥云台系统工作的重要组成部分; ④显示器件:将步进电机的实时转速显示出来,
[单片机]
摄像机运动控制系统方案
LED显示屏驱动芯片的应用
1 引言   LED显示屏作为一项高科技产品引起了人们的高度重视,采用计算机控制,将光、电融为一体的大屏幕智能显示屏已经应用到很多领域。LED显示屏的像素点采用LED发光二极管,将许多发光二极管以点阵方式排列起来,构成LED阵列,进而构成LED屏幕。通过不同的LED驱动方式,可得到不同效果的图像。因此驱动芯片的优劣,对LED显示屏的显示质量起着重要的作用。   LED驱动芯片可分为通用芯片和专用芯片。通用芯片一般用于LED显示屏的低端产品,如户内的单、双色屏等。最常用的通用芯片是74HC595,具有8位锁存、串一并移位寄存器和三态输出功能。每路最大可输出35 mA的电流(不是恒流)。一般IC厂家都可生产此类芯片。   由于L
[家用电子]
LED显示屏<font color='red'>驱动芯片</font>的应用
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved