基于Renesas RAJ306010的无刷直流电机控制设计

发布者:BlissfulDreams最新更新时间:2022-07-28 来源: elecfans关键字:Renesas  无刷直流电机  控制设计 手机看文章 扫描二维码
随时随地手机看文章

  由于在很大程度上受物联网 (IoT) 和汽车电气化的推动,机械系统加速向电子控制转变,设计人员正在将低功耗电机应用于从家用电器、门锁和遥控百叶窗到汽车油泵、座椅、窗户和门等应用中的基本任务。这些直流电机的额定功率从小到几分之一马力到大到多个马力不等,虽几乎无处不在,但往往却不为人知。


  虽然因为电机在不断改进且电机控制技术变得更好、更容易使用,而促进其快速扩展,但设计者仍然面临着提高效率和降低成本的持续压力,同时也要实现更大的精度和更高的可靠性。


  无刷直流 (BLDC) 电机和步进电机(另一种无刷直流电机)的变型可以帮助设计者满足这些日益苛刻的性能和成本目标,但必须仔细考虑电机控制器和电机驱动电路。控制器必须向电机的电子驱动开关(通常是 MOSFET)提供合适的驱动信号,并以精心控制的时序和持续时间来完成。它还必须控制电机上升/下降的轨迹,并能检测和适应电机或负载不可避免的软问题和硬故障。


  本文探讨了无刷直流电机的控制 IC 所提供的功能,为读者提供了一个关于无刷直流电机电气属性的整体视角,并解释了一个复杂的控制器如何使用 Renesas RAJ306010 系列电机控制 IC 让无刷直流电机满足应用目标。


  电机控制路径和电机

  从运动控制软件到电机的路径包括一个运行软件的处理器、电机电源开关设备的栅极驱动器和电机(图 1)。也可能有一条从电机的传感器通过模拟前端回到处理器的路径,便于提供关于电机转子的位置或速度的信息,以确认性能并关闭反馈回路。

 

poYBAGLg5YCAP6A-AAG9sUhvQ50185.png

 

图 1:今天的电机控制始于处理器中作为固件嵌入的软件,用以控制栅极驱动,而栅极驱动器又将电源切换到电机的绕组;另外还可能有一个从电机回到处理器的传感器驱动型反馈回路。(图片来源:Renesas)


  设计师有两种领先的直流驱动无刷电机选择:BLDC 电机和步进电机。两者的功能都是因其内部永久磁铁间的磁互动和其电磁线圈的切换而实现的。选择使用这两种电机中的哪一个,由它们在预期应用领域的相对优点和缺点决定。


  一般来说,BLDC 电机可靠性高,效率高,并能在一定的速度范围内提供大扭矩。电机定子两极依次通电,导致转子(及其永久磁铁)转动。BLDC 电机通常在其外围有三个电子控制的定子(图 2)。

 

pYYBAGLg5Y6ACynWAAEWOwMiOCo316.png

 

图 2:BLDC 电机的定子依次通电,使永磁转子转动。(图片来源:Renesas)

  BLDC 电机的关键属性包括响应性、快速加速、可靠性、长寿命、高速运行和高功率密度。它们通常是医疗设备、冷却风扇、无绳电动工具、转盘和自动化设备等应用的选择。


  步进电机的工作原理与无刷直流电机类似,只是它的旋转运动要小得多,它把一个完整的旋转划分成大量的等角步进(通常是 128 或 256 步)。电机转子不是连续旋转,而是依次驱动它走过或踏过那些小角度的台阶(图 3)。这使得转子能够准确定位,因为它与通电的定子磁极产生的磁场同步。

 

pYYBAGLg5ZmADCSYAADnBlBCLZk888.png

 

图 3:步进运动有大量定子磁极,这些磁极围绕其转子及其永久磁铁排列;通过按控制顺序给这些磁极通电,使转子转动并完成小角度步进。(图片来源:Renesas)


  步进电机是可靠的、精确的,并提供快速的加速和反应能力。由于其步进操作和电机结构、开环控制以及定位稳定性,通常足以满足精密应用要求,如 CD 驱动器、平板扫描仪、打印机和绘图仪。高级应用可以增加一个反馈传感器和闭环控制,以获得更高的精度和性能确认。


  BLDC 电机控制选项

  对于交流感应电机或有刷直流电机来说,速度和扭矩控制的主要手段是通过调整电源电压来实现的,而无刷直流电机与之不同,则是通过对功率开关 MOSFET 的开启和关闭的精心定时来控制的。这使得电机能够有效和准确地处理各种任务。


  这些任务要求的范围包括:提供移动大量空气所需的高转数 (RPM),以提供无绳真空吸尘器的吸力,以及必须具有高启动扭矩的电动工具,特别是当电机相对其负载而停滞时。在许多应用中,电机还必须能够处理巨大的负载变化,这就要求快速响应,以保持稳定的转速。


  控制无刷直流电机的常见策略有:基本 120⁰ 开/关控制和矢量控制。在 120⁰ 开/关控制中,无刷直流电机三个线圈中的两个通电,六个通电模式按旋转顺序切换,以支持任何方向的旋转(图 4)。

 

poYBAGLg5aOAF2oXAAFFjcc_DSw829.png

 

图 4:无刷直流电机的定子磁极(左)可以按顺时针或逆时针的顺序通电(右),从而根据应用的需要驱动转子以任何方向旋转。(图片来源:Renesas)


  在这种模式下,定子线圈以开/关电流(方波)方式通电,当电机升速、保持速度并在线圈断电后降速时,会产生梯形加速曲线。这种方法的好处是内在的简单性和直接操作能力。


  然而,它很容易随着负载和其他变化而出现性能波动,而且对于某些应用来说,精度和效率都不够高。电机控制器中的复杂算法可以通过调整 MOSFET 的开/关时间,以及使用比例积分导数 (PID) 或比例积分 (PI) 控制,在一定程度上克服这些缺点。


  有一个已经变得越来越有吸引力的替代方案就是矢量控制,亦称磁场定向控制 (FOC)。在这种方法中,所有三个线圈都通过连续控制旋转磁场来通电,与 120 度控制相比,运动更加平稳。FOC 现已发展到用于许多大众市场产品,如洗衣机。


  在 FOC 中,每个定子线圈的电流是通过先进的算法测量和控制的,这需要复杂的数字处理。该算法还必须不断地将三相交流值转化为两相直流值(这一过程称为坐标相位转换),简化了后续控制所需的等式和计算(图 5)。如果操作得当,FOC 产生就是高度精确和有效的控制。

 

poYBAGLg5a-AD1KuAAB3dB_0MNA350.png

 

图 5:FOC 算法的一部分需要坐标相位转换来简化复杂的数字处理计算。(图片来源:Renesas)

  用于反馈的传感器选项

  无刷直流电机可以在没有反馈信号的开环拓扑结构中进行控制,也可以通过闭环算法,由电机上的传感器进行反馈。这个决定取决于应用的精度、可靠性和安全考虑因素。

  增加一个反馈传感器会增加成本和算法的复杂性,但会增加对计算的信心,因此在许多应用中是必不可少的。根据不同的应用,主要关注的运动参数是转子的位置或速度。这两个因素密切相关:速度是位置的时间导数,而位置是速度的时间积分。


  实际上,几乎所有的反馈传感器都指示位置,控制器可以直接使用它们的信号或开发衍生信息来确定速度。在更简单的情况下,反馈传感器的主要作用是作为基本电机性能的安全相关检查或作为失速指标,而不是用于闭环控制。


  常用反馈传感器有四种类型:霍尔效应装置、光学编码器、旋转变压器和电感式传感器(图 6)。每一种都提供不同的性能属性、分辨率和成本。

 

poYBAGLg5biACDO7AAJrzZFQfWU956.png

 

图 6:如果用户的系统需要一个电机反馈信号,他们就有广泛的传感器选择,从霍尔效应装置到编码器、旋转变压器和感应传感器。(图片来源:Renesas)


  霍尔效应装置通常被认为是最简单和最容易安装的,而且在许多情况下是足够用的。光学编码器有一系列的分辨率,从低到中等水平,但有安装方面的挑战,而且可能有一些长期可靠性问题。旋转变压器和电感式传感器尺寸更大、更重、更昂贵,并有一些接口方面的挑战,但能提供非常高的分辨率和长期性能。


  电流的提供

  无论是 BLDC 还是步进电机,无刷电机的磁极都是电磁“线圈”,因此必须由电流而非电压驱动。为了正确地给这些磁极通电,电机控制系统必须通过开/关切换(大多数情况下是 MOSFET)来提供这种电流,并具有准确的定时、脉冲宽度和受控的压摆率,以正确和有效地驱动电机。驱动安排还必须保护 MOSFET 免受各种故障条件的影响,如电机停转、电流需求过大、热过载和短路。


  对于相对较小的电机,通常需要低于 500 毫安 (mA) 至 1 安培 (A) 的电流,可以将 MOSFET 栅极驱动器甚至 MOSFET 嵌入到电机控制 IC 封装中,以保持尽可能小的封装尺寸。虽然这很方便,并简化了设计导入,但在许多情况下,这并不是一个实用的选择,原因有多个:


  高性能 MOSFET 的半导体工艺与用于控制器数字逻辑的半导体工艺非常不同,因此组合的最终设计是一种妥协(但可能是可以接受的)。

  MOSFET 的功率耗散和热管理在很大程度上是由应用功率需求决定的。随着电流和功率水平的增加,片上 MOSFET 的耗散和产生的热量很快就会超过封装的限制。在这些情况下,将数字和电源功能分开才是更好的解决方案,让设计者能够优化 MOSFET 的放置和热管理。


  最后,随着电机所需电流水平的增加,电机电源导线中的 IR 驱动电压降的增加会成为一个问题。因此,建议将开关设备放在离负载更近的地方。


  由于这些原因,许多电机和运动控制 IC 包括了所有需要的功能,除了功率 MOSFET。多 MOSFET 的拓扑结构通常被称为逆变器功能。使用分立 MOSFET 能够让设计者灵活地选择具有合适规格组合的器件,如负载电流、“导通”电阻、封装类型和开关特性等因素。


  复杂 IC 应对电机控制挑战

  在过去,先进的电机控制需要一个 IC 组件。通常情况下,这可能涉及到一个低端的处理器来发出通用指令,并有一个专门的数字协处理器来实现必要的算法,或者一个高端的处理器来同时做这两件事,另外还有用于功率器件的栅极驱动电路。这不仅需要更大的印刷电路板面积和更长的物料清单 (BOM),而且经常会有系统集成和相关的调试问题。


  然而,今天的电机控制 IC 可以在一个器件中完成这所有一切,如 Renesas RAJ306010(图 7)所示。在 RAJ306010 内有许多功能块,专门针对电机控制设计的独特需求。

 

pYYBAGLg5cWAHimxAAN8SY8nvls719.png

 

图 7:Renesas RAJ306010 IC 具有高度先进的电机控制所需的功能(功率 MOSFET 除外),因此比多 IC 解决方案占用的空间更少,同时简化了 BOM 和设计集成。(图片来源:Renesas)


  这款通用的电机控制 IC 旨在用于三相无刷直流电机应用。它在一个微小的 8×8 毫米 (mm)、64 引脚的 QFN 封装中结合并紧密集成了两个不同的角色:数字控制器功能和大部分模拟预驱动器功能。它在 6 至 24 伏的电压下运行,目标针对独立、基本自主的应用,如电动工具、园艺工具、吸尘器、打印机、风扇、泵和机器人。(注意,另一个几乎相同的器件 RAJ306001 是一个 6 至 30 伏的版本,与 RAJ306010 共用相同的规格书。)

  在数字方面,RAJ306010 集成了一个 16 位微控制器(Renesas 的 RL78/G1F 级),有 64KB 的闪存、4KB 的数据闪存和 5.5KB 的 RAM 支持。此外,还有大量的数字 I/O:通用 I/O (GPIO)、SPI、I2C 和一个 UART。另还有一个九通道、10 位模数转换器 (ADC),以将模拟信号引入该器件。


  为了使用 RAJ306010,系统设计者将所需的操作参数加载到相应的闪存控制寄存器中,以建立所需的操作模式和条件。从一个典型应用高级系统框图(图 8)中可以看出,该集成电路在上电时就可以发挥作用,而不需要任何额外的微控制器。

 

poYBAGLg5dCAbNV0AACl0AEgrRA681.png

 

图 8:这个使用 RAJ306001 的基本应用高级系统框图显示了高集成水平是如何将对额外分立元件的需求降到最低的。(图片来源:Renesas)

  RAJ306010 的模拟侧具有三个半桥栅极驱动器,栅极驱动峰值电流可调,最高可达 500 毫安,有一个自调整死区时间发生器功能,以防止桥“击穿”和损坏,另外还有一个电流感应放大器和一个反电动势放大器。一个集成的充电泵将所提供的栅极驱动电压从一个较低电压源电压提升到 13 伏。


  对霍尔效应传感器有直接的支持,模拟前端 (AFE) 也可用于支持其他类型的反馈传感器。与任何设计合理的电机控制一样,其功能包括过热保护、过/欠电压锁定 (UVLO)、过流检测和对电机锁定条件的保护。


  图 9 中的例子展示了 RAJ306010 如何轻松处理一个基本的独立应用,如 24 伏的无绳搅拌机,尽管它几乎可以是任何类似的小家电。请注意,大部分的电路都用于给八芯电池组充电和管理,而电机控制只需要控制 IC、外部三相桥接器(逆变器)、反馈电压感应电路(通过电流检测电阻器)和用户的“启动”按钮。

 

pYYBAGLg5d2AFWHBAAE2BKqcBPU075.png

 

图 9:RAJ306010 的高级功能集成清楚地表明,基本家电的核心电机控制功能(如这种电池供电的搅拌器)所需的额外电路和额外元件是多么少。(图片来源:Renesas)

  BLDC 电机控制上手体验

  在纸上或在 PC 上使用整个系统的各种模型来计划、模拟、评估和调整一个电机控制应用是一回事。而运行一个实际的电机,并使用真实的组件、真实的负载和真实的动力来测试性能,以及了解设置初始启动条件和各种性能参数变化的影响则是另一回事。


  这就是 Renesas RTK0EML2C0S01020BJ 电机控制评估系统(图 10)成为设计工程师重要资产的原因,同时该系统还配套了 Renesas Motor Workbench 以方便调试。这个软件工具能够让设计者熟悉 RAJ306010 的操作、其输入和输出模式以及其各种控制寄存器的功能。

 

poYBAGLg5emAB_D2AAPPwsgLIPE221.png

 

图 10:该板是 Renesas RTK0EML2C0S01020BJ 电机控制评估系统的核心,当与 Renesas Motor Workbench 软件一起使用时,可加快参数的微调和使用 RAJ306010 电机控制 IC 时对电机性能的评估。(图片来源:Renesas)

  为了更快地进入产品开发阶段,该评估系统包括了一个 24 伏/420 mA 的 BLDC 电机,空载速度为 3900 RPM,额定扭矩为 19.6 毫牛顿•米 (mN-m)(相当于 200 克力•厘米)。此外,Renesas 还提供了用于无传感器和基于传感器的控制的样本软件控制程序。


  结语

  设计人员考虑在其系统中使用直流电机时,除了传统的有刷直流电机外,还有许多选择。高性能、高性价比 BLDC 电机可在小型封装中用于实现大功率和高精度要求。为了充分实现这些无刷直流电机的潜力,人们开发出了智能控制器,它能够使用用户所需的参数实现所需的算法。这些器件还能为电机的开关 MOSFET 和其他模拟 I/O 提供必要的驱动,可实现完整的电机控制解决方案。


  如上所述,像 Renesas RAJ306010 这样的 IC,在开发套件和软件的支持下,大大简化了为家电、汽车座椅和窗户以及以及其他许多现在常见的应用提供高性能、小尺寸和高效电机控制的设计挑战。

  参考文献

  BLDC Motor Control Algorithms

  RTK0EML2C0S01020BJ BLDC Motor Control EvaluaTIon System for RAJ3060xx Motor Control ICs

  ApplicaTIon Note R01AN3786EJ0102, “Sensorless Vector Control for Permanent Magnet Synchronous Motor (Algorithm)”

  Portable Power Tools SoluTIon

  24V Cordless Blender

  Motor SoluTIons: User-Friendly Motor Control Development Environment to Shorten Time to Market


关键字:Renesas  无刷直流电机  控制设计 引用地址:基于Renesas RAJ306010的无刷直流电机控制设计

上一篇:什么是第一类、第二类、第三类永动机
下一篇:工业自动化中接近传感器的选择和使用

推荐阅读最新更新时间:2024-11-16 21:22

瑞萨电子推出全新汽车级智能功率器件
瑞萨电子推出全新汽车级智能功率器件 可在新一代E/E架构中实现安全、灵活的配电 新型智能功率器件带来40%的尺寸缩减 2023 年 1 月 17 日,中国北京讯 - 全球半导体解决方案供应商瑞萨电子 今日宣布,推出一款全新汽车级智能功率器件(IPD),该器件可安全、灵活地控制车辆内的配电,满足新一代E/E(电气/电子)架构的要求。 新型RAJ2810024H12HPD采用小型TO-252-7封装,与传统的TO-263封装产品相比,安装面积减少约40%。此外,新器件的先进电流检测功能可实现对过流等异常电流的高精度检测。由于全新IPD即使在低负载时也能检测异常电流,因而允许工程师设计高度安全和精确的电源控制系统,甚至可以
[汽车电子]
<font color='red'>瑞萨</font>电子推出全新汽车级智能功率器件
蓄电池组充放电集散控制系统的设计1
技术新品 Xilinx Virtex-5系列新增三款器件 上升时间加速器改善重负载系统 飞思卡尔S08微控制器再添新丁 支持“智能”控制面板应用的MCU 安富利亚洲发布Virtex-5工具套件 以Flash为基础的FPGA大幅降低功耗 Xtensa新添硬件选项和软件工具 具蓝牙功能的数码相框芯片设计 Stratix II GX FPGA提供50Gbps接口 应用处理器支持单段广播PND
[焦点新闻]
应用CPLD实现交通控制系统芯片设计
    摘要: 介绍可编程逻辑器件的结构和开发软件MAX+PLUSII主要特点,以交通控制系统电路芯片设计为例,叙述自顶向下的设计方法。     关键词: FLEX10K 可编程逻辑器件 自顶向下 集成电路的发展经历了从小规模、中规模、大规模和超大规模集成的过程,但随着科学技术的发展,许多特定功能的专用集成电路(ASIC)应用日益广泛,用户迫切希望根据自身设计要求自行构造逻辑功能的数字电路。复杂可编程逻辑器件CPLD(Complex Programmable Logic Devices)顺应了这一新的需要。它能将大量逻辑功能集成于1个芯片中,其规模可达几十万或上百门以上。用CPLD开发的数字系统个有容量
[应用]
传感器智能采集传输控制系统的研究与设计
摘要:文中介绍了一种传感器智能采集传输控制系统的设计。该设计由基于CC2530芯片的ZigBee无线组网传输的智能变送器模块、基于STM32F103ZET6嵌入式微控制器为核心的串口设备联网模块和上位机软件组成。根据IEEE1451标准中电子数据表格(TEDS)的研究而设计的智能变送器模块,能够自动识别传感器终端结点采集到的信号(电阻、电压、频率、开关量等)。该系统支持气象要素传感器的热插拔、即插即用和自动识别等功能,具有串口联网的功能,并能够通过光纤传输对传感器设备进行远距离的控制,实现数据长距离可靠传输。 关键词:智能传感器;Zigbee;双向透明数据传输;自动识别;IEEE1451协议 传感器的智能化、网络化发展已经是智
[工业控制]
传感器智能采集传输<font color='red'>控制</font>系统的研究与<font color='red'>设计</font>
瑞萨采用晶芯科技RISC-V IP开发ASSP芯片
瑞萨电子宣布与晶心科技(Andes)进行合作,瑞萨选择AndesCore IP 32位RISC-V CPU内核嵌入到其新的ASSP中,该产品将于2021年下半年开始试产。 “我们很高兴瑞萨可以选择晶心科技的RISC-V,这不仅是晶芯科技的里程碑,同时也是RISC-V的里程碑。”晶芯科技总经理林志明说道。 “晶芯科技RISC-V IP提供的可扩展性能、可选择的安全特性和定制选项,使瑞萨能够为未来特定应用标准产品提供创新的解决方案,”瑞萨物联网和基础设施事业部总经理、执行副总裁Sailesh Chittipeddi说。“为现有或新兴应用程序寻找具有成本效益的客户,将可以利用新产品缩短的上市时间和降低的开发成本。” 瑞萨的预
[嵌入式]
安森美推出ecoSpin系列,重新定义无刷直流电机控制
安森美推出ecoSpin系列,重新定义无刷直流电机控制 ecoSpin™无刷直流电机控制方案含嵌入式栅极驱动器和微控制器引擎,可在高达600 V的电压下可靠地工作,且功率可扩展 2022年10月28日-领先于智能电源和智能感知技术的安森美(onsemi, 美国纳斯达克股票代号:ON),推出新的ecoSpin™系列无刷直流(以下简称“BLDC”)电机控制器。安森美通过将控制和驱动功能整合在一个完整的系统级封装(SiP)中,简化了用于暖通空调(HVAC)、制冷和机器人等应用中的高压电机控制系统的开发。 ecoSpin系列的首个器件是ECS640A,这是一款三相BLDC电机控制器,可在高达600 V的高压下可靠地运行。
[工业控制]
安森美推出ecoSpin系列,重新定义<font color='red'>无刷直流电机</font><font color='red'>控制</font>
基于单片机的模糊控制系统的设计与实现
1 引言      模糊控制(Fuzzy Control)是目前自动控制研究中活跃而富有成果的领域之一,模糊理论是当前能用来对信息进行软处理的最新技术,可以将人的定性思维和判断方法定量化 为适合计算机处理的过程,使计算机能判断像“大概”、“轻”这样的模糊信息。采用传统控制理论,不管是用经典控制理论还是用现代控制理论来设计一个控制系 统,都需要事先知道被控对象的精确数学模型。然而,在许多情况下被控对象(或生产过程)的精确数学模型很难建立;像建材工业生产中的水泥窑、玻璃窑,化学 生产中的化学反应过程,食品生产中的发酵过程,还有众多炉类的热处理过程。诸如此类过程具有变量多,各种参数存在不同程度的时变性;且过程具有非线性,强 耦合,较
[嵌入式]
基于DSP的双足机器人运动控制系统设计
近年来,仿人机器人一直是自动控制领域研究的热点。在模仿人类进行迈步行走时,由于仿人机器人的重心经常要处于中心线以外的区域,使得它的身体很难保持站姿平衡,能够稳定地实现双足行走是仿人机器人研究的重点也是难点。人类需要大脑和肢体的相互配合来协调动作,机器人需要的则是运动控制器和驱动装置的强大支持,尤其是运动控制器,需要有高效率的芯片为基础,才能最迅速地采集数据、完成计算和发送指令。在本次设计中机器人关节使用的是大功率三相无刷直流电机,控制器采用TMS320F2812芯片,它是TI公司推出的一款针对控制领域做优化配置的数字信号处理器,器件上集成了多种先进的外设,为电机高速度和高精度控制提供了良好的平台。 1 系统概述 双足机
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved