01、由于技术进步,集成正在占领电机控制市场。各种尺寸和功率密度的无刷直流电机 (BLDC) 和永磁同步电机 (PMSM) 正迅速取代有刷交流/直流和交流感应等电机拓扑结构。
02、无刷直流电机/永磁同步电机在机械上具有相同的结构,但定子绕组除外。它们的定子绕组采用的是不同的几何结构。定子始终与电机磁体相对。这些电机低速时可提供高扭矩,因此非常适合伺服电机应用。
03、无刷直流电机和永磁同步电机无需使用电刷和换向器来驱动电机,因此比有刷电机更加高效可靠。
04、无刷直流电机和永磁同步电机利用软件控制算法代替电刷和机械换向器来驱使电机运行。
05、无刷直流电机和永磁同步电机的机械结构很简单。电机的非旋转定子上有一个电磁绕组。转子采用永磁体制成。定子可以在内部或外部,并且总是处于磁体的对面。但定子始终是固定不动的部分,而转子始终是移动(旋转)的部分。
06、无刷直流电机可以有 1、2、3、4 或 5 相。它们的名称和驱动算法可能不同,但本质上都是无刷的。
07、有些无刷直流电机带有传感器,可帮助获得转子位置。软件控制算法利用这些传感器(霍尔传感器或编码器)来辅助电机换向或电机转动。当应用需要在高负载下启动时,需要这些带有传感器的无刷直流电机。
08、如果无刷直流电机没有用于获取转子位置的传感器,则使用数学模型。这些数学模型代表无传感器算法。在无传感器算法中,电机就是传感器。
09、与有刷电机相比,无刷直流电机和永磁同步电机具有一些重要的系统优势。它们能够利用电子换向方案驱动电机,从而可使能源效率提高 20% 到 30%。
10、如今很多产品需要可变化的电机速度。这些电机需要脉宽调制 (PWM) 来改变电机速度。脉宽调制提供对电机速度和扭矩的精确控制,可实现变速。
关键字:电机控制 功率密度
引用地址:
电机控制领域的10大技术介绍
推荐阅读最新更新时间:2024-11-12 11:57
数字控制技术在功率密度和电源管理上的应用
在一个 电源 系统中有许多地方可以采用数字技术,一个是电源内部电路本身,还有就是在系统级实现功率管理和监控功能 。本文将针对第一种情况进行详细讨论。文中比较了板载电源(BMPS)的内部控制功能采用数字技术和更传统的模拟方法的系统级实现效果。对于比较中所提到的每一个方案,BMPS的最终用户都可以采用传统的方式来使用器件,而无需额外的系统级数字技术。比较依赖了实际的案例研究,利用了实际的产品单元作为参考基准。研究中使用了两种数字设计方案。一种是尺寸优化设计,它提供与模拟设计相近的输出功率,但具有较小的物理尺寸。另一种方案则是输出优化设计,即维持与模拟设计类似的外形尺寸,但使输出功率增加。在所有的三种设计方法中,基本的功率传递拓扑结
[电源管理]
汽车电机控制器组成及工作原理
汽车电机控制器的组成部件有哪些 汽车电机控制器是控制汽车电动机运行的重要部件,通常由多个组成部件组成,包括但不限于以下几种: 1.控制单元(Control Unit)**: - 控制单元是整个电机控制器的核心部件,负责接收传感器信号、执行控制算法并输出控制信号给电动机驱动器。 2.传感器(Sensors)**: - 传感器用于监测电动机的运行状态和环境参数,例如转速、温度、电流等信息,并将这些信息传递给控制单元。 3.电动机驱动器(Motor Driver)**: - 电动机驱动器负责根据控制单元发送的信号来控制电动机的运行,通常包括功率放大器、电流控制器等组件。 4.继电器(Relays)**: - 继电器用于控制电动机的启动、
[嵌入式]
直流电机控制(PWM)+普中51单片机+江科大自化协
1 实验现象 2 实验原理 通过按键来控制PWM占空比实现对直流电机的调速,数码管则显示当前速度挡位信息。 (1)直流电机的控制是通过设置PWM波的占空比来控制直流电机的转速,占空比越大,转速越快,越小转速越低; (2)单片机的I/O口是不能直接驱动电机的,所以还需要用一个驱动芯片。如 LG9110、CMO825、L298 等。驱动芯片可以将单片机I/O输出信号放大,这样电机中流过的电流足够大,电机才能转起来。 (3)直流电机只有两根电源线,直流电机的两根电源线是不分正负极的。假设两根电源线代号分别为A、B。 当A线接正极,B线接负极时,电机正转(反转);那么当B线接正极,A线接负极时,电机反转(正转)。 3 参考程序
[单片机]
基于单片机C8051F020的数字多电机控制平台设计
引言 步进电动机因具有转子惯量低、定位精度高、无累积误差等特点,非常适合用于开环位置控制系统中。直流电机是伺服控制中常用的电机。然而在实际系统中为满足不同的功能往往同时存在多个运动部件,常用的方法是一个独立的功能对应一个控制系统,这样虽然模块性很好,但是占用了大量的系统资源和空间,也在一定程度上降低了系统的可靠性。 如在某系统中存在4 个运动部件,分别为两台三相反应式步进电动机,一台直流电机和一台四相步进电动机的控制。本着提高系统集成度的想法,本文只用一个控制芯片C8051F020 就完成了以上4 台电机的驱动控制,电路简单,可靠性高。 1 总体设计 基于Cygnal 公司的MCU 控制芯片C805
[单片机]
汽车电子风扇电机控制电路与主电路电磁兼容分析与优化
随着电动汽车以及 自动驾驶 技术的推广,大量电子电气设备的使用对电磁兼容( EMC )提出了日趋严苛的要求,产品设计中的EMC问题变得越来越重要。该文对主 电路 分单纯铺铜、增加铁质连接片以及增加铁质连接片与铜质导线三种情况分别建立有限元模型,计算得到了表面电场强度,分析了电场分布趋势。通过实验测量风扇电机控制电路和主电路的电磁场分布。 实验结果证明仿真结果的正确性,进而分析局部电场强度集中的原因,给出改进措施。对控制电路主芯片连接 MOSFET 栅极的信号网络进行信号完整性分析,仿真计算得到了线路眼图,通过调整终端 电阻 ,改善了眼图的眼高和眼宽,有效地提高了信号的传输质量。 通过主电路的有限元分析和控制电路的信号完整性仿真,精
[汽车电子]
谈谈电机控制芯片设计的霍尔效应
1879 年,马里兰州立大学研究生霍耳发现:沿x 方向流过的电流受到其垂直方 向(z 方向)的磁场作用时,带电离子会受到y 方向的磁力影响而产生电势积累, 这就是霍耳效应。其中产生的电势差被称为霍耳电压。由于变化的磁场会产生变化的电场,那么,利用霍耳效应做磁场监测是可行的,事实上也是目前普遍采取的方法。基于霍耳效应的传感-控制芯片广泛应用在电机控制、手机、电流及磁 场测量等领域。 实际应用中,常用于PC 散热等用途的直流无刷电机,由于外部障碍物等因素,可能异常停止运转。电机控制芯片需要通过霍耳传感器对磁场相位监测,判别异常停转情况,及时关闭电机并延时重启,以便电机能够恢复正常工作。
图1 给出了霍耳效应芯片的设计框图
[嵌入式]
机器人的伺服电机控制原理是什么
的应用日渐广泛,对生产与提高效能有重要作用。主要利用进行运动控制,从而实现移动和抓取工具。本文将详细讨论伺服电机的特点以及不同类型伺服电机相应的控制原理。
运动控制原理
运动控制与机器人密切相关。工业应用中的机器人必须透过由多款所构成的致动器才能自行移动,以执行任务或透过机器手臂抓取工具。
机器人的运动通常由器、电机驱动、电机本体(多为伺服电机)组成。电机具备运算功能,并可传送指令以驱动电机。驱动可提供增压,根据控制器指令以驱动电机。电机可以直接移动机器人,也可通过传动系统或链条系统让机器人移动。
图1:机器人的运动控制系统。
输出类型
移动机器人往往用于探索大范围面积
[机器人]
某车载电机控制器EMC整改案例
一前言 本次整改样机为某客户的车载电机控制项目,主要通过PWM信号进行电机转速调整,实际测试过程中,存在低频段部分辐射严重超标问题,以下是本次测试与整改分析过程。 二电机控制器架构及问题点 上图为该电机控制器的简单示意图,通过PWM信号控制电机负极功率MOSFET管的通断,调节控制板输出的PWM信号的脉冲宽度的占空比的大小,可以实现对电机转速的控制,PWM信号的开关频率为16KHz。初步分析可以得到以下几点: (1)EMI可分为传导干扰和辐射干扰,传导干扰是指干扰能量沿着电缆以干扰电压的形式传播,辐射干扰是指干扰能量以电磁波的形式通过空间将其信号耦合到另一个电网络。 (2)为了有效限值EMI,必须搞清楚干扰源和耦合路径才能
[嵌入式]