基于霍尔和电流检测的电动窗的位置的判断原理

发布者:捡漏来了最新更新时间:2023-06-09 来源: elecfans关键字:霍尔  电流检测 手机看文章 扫描二维码
随时随地手机看文章

随着汽车工业的发展,汽车电子部件越来越多地被应用于现代汽车中,为汽车提供了更好的安全性、舒适性和经济性。以前汽车普遍采用手摇曲柄的方式使车窗玻璃上升或下降,现今轿车很多都安装了电动车窗。而具有防夹功能的电动窗应用于汽车始于20世纪90年代,当玻璃上升途中遇到人力障碍时会自动识别而反向运行,防止乘员夹伤,实现防夹功能。由于该功能的重要性,在欧美新车型上都已成为标准配置,目前国内新推出的高端车型已成为标准配置。由于低成本方案的推出,经济型轿车也开始逐渐配备应用这一功能。而车窗位置判断准确是车窗的防夹功能的正常实现的前提。


1准确判断电动窗位置的重要性

法规规定,具有自动上升功能的车窗必须配备自动防夹功能。即当车窗在自动上升过程中如果,车窗玻璃遇到障碍物。必须做出判断后反转,并且防夹力要小于100 N。而法规规定的防夹区域是4 mm~200 mm(如图1)。这就要求系统对车窗的位置进行准确的计算和判断。

基于霍尔和电流检测的电动窗的位置的判断原理

图1 法规防夹区域

如果车窗位置计算不准确会有以下后果:

1) 比如车窗在上升过程中在防夹区域内,如果车窗位置计算不准确,系统判断为防夹区域外。车窗可能遇到障碍物,但是不做防夹反转。而是继续上升玻璃。障碍物如果是人,导致把人夹伤。


图2 防夹车窗

2) 车窗自动上升过程中,如果车窗位置计算不准确,车窗就会到顶部位置认为在防夹区域内,遇堵后反转。导致车窗不能关满。

3) 车窗在上升过程中,由于存在车窗重量和窗框阻力等因素,在每个位置上的阻力大小是不一样的。因此判断车窗位置也是相当重要的。

由以上三点分析可知,车窗位置判断的准确在防夹功能中,既有非常重要的意义。


2电动窗位置判断的原理

从机械的角度讲,电动车窗砸升降时,电机旋转会带动钢丝绳的运动,从而带动车窗的上下开闭。电机每旋转一定的角度,钢丝绳就相应地运动一定行程,因此车窗运动的行程与电机的旋转的圈数成线性关系。通过计算电机旋转的圈数,可以间接算出车窗的位置。


2.1霍尔原理

电机的旋转会使得霍尔传感器产生脉冲信号。玻璃位置的检测是通过对控制模块中的霍尔传感器发出的方波进行计数来实现。软件设计中通过单片机芯片的输入捕捉功能记录车窗运行过程中的脉冲个数,通过学习,将车窗的上密封条记为位置0,而下密封条为最大位置。在车窗上升过程中将位置计数器减1,上升到顶时位置计数器清0,下降时位置计数器加l。因此,可按照要求确定防夹区界限对应的位置计数器的值。通过对位置计数器的值的检测可以间接判断玻璃的位置。

基于霍尔和电流检测的电动窗的位置的判断原理

图3 霍尔原理

脉冲计数方式的关键问题在于位置记录要精确,但在试验中却存在电机切断电源后依旧会发出几个脉冲的问题,这几个脉冲由惯性造成,而且不同的玻璃升降器产生的脉冲个数不同。这些脉冲对车窗位置影响随情况的不同而不。在车窗上下两端堵转时,这些脉冲不太可能造成车窗位置的变化,而在中间位置停止时则有可能造成车窗位置移动,特别是下降途中人为停止时对车窗位置的影响更大。为了减小这种影响,与电机通电运动时位置计数一样,在算法中捕捉这些脉冲。如果当前为下降状态,则对电机断电后产生的脉冲进行位置加法操作,如果当前为上升状态,则对电机断电后产生的脉冲进行位置减法操作。


2.2纹波原理

电机有磁极、转子线圈、换向器组成。根据右手定律转子线圈通电后再磁极磁场的作用下产生运动。运动到磁场边缘是磁场变弱,电动势减小,电流增大。换向器改变转子线圈的电流方向,重新进入磁场电动势增大,电流减小。转子线圈不断转动、电动势和电流不断变化,从而纹波不断产生。所以纹波是电机的固有特性,通过计算纹波的个数就能计算出转子换向的次数,就能计算出窗户的相对位置,结合时间就能得出电机的转速。

基于霍尔和电流检测的电动窗的位置的判断原理

图4 纹波原理

由于电机在启动,停止,反转,堵转时的纹波特征不明显。如图5和图6,不能精准的计数纹波个数。只能通过算法进行补偿。这样纹波计数必然和实际的必然存在误差。而这误差随着车窗操作次数的增加,误差也会跟着累积。

基于霍尔和电流检测的电动窗的位置的判断原理

图5 特殊场景一

基于霍尔和电流检测的电动窗的位置的判断原理

图6 特殊场景二

出于舒适性对机构噪声要求和电机机构的寿命保护。往往要求车窗到顶和到底停止做软停止,即不是做堵转停止,而是通过准确判断车窗的位置,在接近顶或底的时候,停止对电机的输出,通过惯性将车窗关满。通过策略经过几次的操作车窗后才关闭软停止,做堵转学习车窗位置,消除误差积累。这对车窗位置判断精准度提出了更大的挑战。


3判断基于电流纹波的电动车窗位置的准确性的3种方法

3.1霍尔比较法

软件开发前期,使用霍尔电机来开发纹波计数算法。开发2套算法。一套霍尔计数。一套纹波计数。通过霍尔计数值做车窗位置参考。来矫正纹波计数。给纹波补偿和标定提供基准参考。通过高低温高低压组合多次实验,如果通过霍尔计数得出的车窗位置和纹波计数得出的车窗位置做差值。如果在整个实验过程始终是小于4 mm。那么可以认为纹波计算算法是准确的。此方法适用于算法开发阶段,非常方便于开发者,方便做算法优化和标定值选取。但是由于霍尔传感器精度不高,(一般一个霍尔电机上会装有2个霍尔传感器,一个用于计算霍尔方波个数,一个用于相位判断电机的转向)所以霍尔方法本身也会存在一定的误差。只能做参考。真正纹波防夹升降器在产品阶段是没有霍尔传感器的。


3.2多次不到顶和到底操作后4 mm防夹法

有软停止功能的纹波计数的误差清除策略往往是车窗操作经过一个标定值的次数n后进行堵转学习(前n次的停止做软停止,误差会累积)。因此我们可以通过n操作升降窗不到顶和底,不让车窗做堵转学习消除累积误差。在第n+1次后拿4 mm测试棒放在窗顶(如图7.),让其做4mm防夹反转。如果能堵转反转,那么接下来要撤掉4 mm测试棒,执行自动升窗,如果也能完成自动升降并关满车窗。则可以说明纹波计数算法是比较准确的。

为什么第n+1次后防夹反转后还要做确认是否能自动升窗把窗关满这一项。因为第n+1次能防夹反转有可能是误差是向下误差,比如在4 mm处软件算法可能认为是10 mm处或其他。那么误差较大的情况下也可防夹反转。这种情况执行自动上升的时候,在车窗0位置就有可能误认为是防夹区域,从而导致关窗时候遇到顶又做防夹反转,导致关窗不满。如果误差是向上偏的,比如在10 mm位置,纹波计数算法认为是在小于4 mm的非防夹区域,就不做防夹反转。那么车窗就会在4 mm棒处停止升窗。

此方法简单直接,不需要借助太多的测试工具,可操作性强,适用于整个过程。非常适用于测试人员测试验收。

基于霍尔和电流检测的电动窗的位置的判断原理

图7 4 mm防夹测试

3.3纹波计数清零判断法

纹波计数算法里,软件里必然有用来代表纹波个数或车窗位置的变量,无论哪种策略,纹波的累积误差的终究是必须消除的。那么在消除清0的前一个值就是误差的累积值。通过监控这个值。如果这个值始终对应的车窗位置是小于4 mm,那么肯定这个纹波计数算法是比较准确的。此方法判断的准确性最高,适用用与整个过程。但是需要借助较多的其他输出显示工具。比较适用于开发人员。不方便测试人员。


4结论

本文首先阐述了电动车窗位置判断准确性的重要性,然后分别介绍了基于霍尔的和基于电流检测的电动窗的位置的判断原理。就基于纹波的电动车窗位置的准确性的判断3个方法进行了列举详细的阐述。综合全文可知,电动窗的位置的判断的准确性对车窗的防夹功能的正常实现影响很大。因此,希望本文档内容能够给国内整车厂和供应商在防夹电动窗开发和评估工人员一些参考。


关键字:霍尔  电流检测 引用地址:基于霍尔和电流检测的电动窗的位置的判断原理

上一篇:汽车串联式、并联式和混联式三种系统优势和区别对比
下一篇:电动汽车充放储一体化电站为可再生能源发电提供最佳解决方案

推荐阅读最新更新时间:2024-11-17 15:25

如何检测和应用线性霍尔传感器
  线性霍尔传感器有单端输出(三个管脚)和双端输出的(4或8个管脚)两种,如图1所示。   图1两种线性霍尔传感器的电路结构   线性霍尔传感器的典型产品见表。   表1部分线性霍尔传感器主要参数   测试线性霍尔传感器的好坏可以按图1搭一个测试电路,以三端管脚的3503U(电动自行车上调速用)为例。   图2测试线性霍尔传感器好坏的电路   图2中,电源电压为直流6V,测试电表为UT60E数字万用表(拨在V=档),测试时,用一条形磁铁,S极逐渐靠近霍尔传感器有型号标志的一面,数字万用表的电压应逐步升高,可由静态时的3.2V上升至L5V。如果同时用一块N极的磁铁靠近传感器无字的一面,数宇万用表电压可达到4V以上。
[测试测量]
如何检测和应用线性<font color='red'>霍尔</font>传感器
基于峰值电流控制芯片UC3846斜坡补偿电路设计
  主电路拓扑采用双管正激电路   UC3846 的斜坡补偿选择电路根据峰值电流控制的电路图可以看到,加入斜坡补偿有两种方法,   一种是将斜坡补偿信号加到电流检测信号中,如图17 所示;另一种是将斜坡补偿信号从误差电   压信号中减去,如图18 所示。     图 18 将斜坡补偿加到电压检测信号上   前一种实现方法简单,但由于斜坡补偿信号的加入,有可能在实现电流限制功能时产生误差。   第二种方法实现时必须满足两个条件:①在开关频率附近,电压放大器的增益必须为一个固定   的常数R1/R2;②当射极斜坡补偿时,电流放大器和电压放大器都必须考虑进去。改进第一种   方法得到图19 所示电
[电源管理]
基于峰值电流控制芯片UC3846<font color='red'>的</font>斜坡补偿电路设计
TI推出99%占空比固定频率功率控制器
德州仪器推出 99 %占空比的固定频率笔记本系统功率控制器 TPS51220 。 TPS51220 是一款具备两个集成 LDO 的双通道同步降压控制器,可实现高效率、快速瞬态响应以及 99 % 的占空比。该器件使用一个电阻器在 200 KHZ 至 1 MHZ 的范围内调节固定频率。每个通道都可运行具备可调交错比率的 180 º 相位差。该器件是笔记本电脑、 I/O 总线应用以及 LCD 电视中负载点的绝佳选择。 特性:  输入电压范围为: 4.5V ~ 28V  输出电压范围为:
[新品]
一种谐波与无功电流检测方法探讨
1 引言 随着电力系统非线性负荷的增加,谐波污染变得越来越严重,APF是一种可有效治理谐波污染的装置,同时能补偿无功电流。作为APF治理谐波及补偿无功的前提条件,谐波及无功电流检测方法的快速性和准确性影响着谐波治理和无功补偿的效果。谐波及无功电流检测方法有:基于瞬时无功功率理论的谐波及无功电流检测方法、基于傅里叶分析的检测方法、基于神经网络的检测方法和基于小波分析的检测方法。 2 谐波及无功电流检测方法的提出 电力系统中,理想状态下线路上均为有功电流。但系统中的储能元件和非线性负载会使线路中存在无功和谐波电流。假设电网电压和负载电流三相平衡,设三相电网相电压为: 其余分量为交流分量,包括无功和谐波分量。 理想治
[测试测量]
一种谐波与无功<font color='red'>电流检测</font>方法<font color='red'>的</font>探讨
霍尔传感器应用前景广阔
  在我们的日常生活中,霍尔传感器被广泛应用。例如,在翻盖或是滑盖的手机中,用来检测手机盖翻开或是滑动的器件就是霍尔传感器;再如,在电脑键盘上,实现光标移动的滚动键就是由霍尔传感器组成的;还有,在汽车变速箱、电动门窗等需要电机的部件中也有霍尔传感器应用。我们在每天的生活中都在与霍尔传感器打交道。   “霍尔传感器在手机、笔记本、电机控制和汽车领域已经获得了很好的应用,在中国以及全球其他市场都是如此。”美信运放与比较器商务营销经理PatrickLong对《中国电子报》记者说,“随着业界对霍尔传感器的投资越来越多,它会开启一些新的应用市场,例如单芯片磁性罗盘应用市场等。”   “由于需要采用霍尔传感器的应用领域,如汽车、电机、手机
[传感器]
国芯思辰|高灵敏霍尔开关AH465(兼容SS1331)用于无线蓝牙耳机中
无线蓝牙耳机主要是通过蓝牙的方式实现耳机与手机的连接,在我们日常生活上携带方便,操作简单,其充电仓是用于给蓝牙耳机充电和存储,在充电仓中需要检测开盒和关盒的操作,用于开启和手机的连接与关断。在这一检测功能中,霍尔器件因为反应灵敏,体积小,功耗低,受到越来越多方案的青睐,文章主要介绍中科阿尔法AH465霍尔开关芯片在无线蓝牙耳机中的应用,该芯片具有抗应力强、灵敏度高、温度稳定性好等特点。 AH465是一款微功耗、高灵敏度的单极性霍尔开关芯片,是CMOS工艺设计生产。采用先进的斩波稳定技术,因而能够提供准确而稳定的磁开关点,芯片器件内部还集成了电压调节器、霍尔电压发生器、小信号放大器、施密特触发器和CMOS输出驱动器等,同时AH4
[嵌入式]
国芯思辰|高灵敏<font color='red'>霍尔</font>开关AH465(兼容SS1331)用于无线蓝牙耳机中
MAX4376/MAX4377/MAX4378高边电流检测放大器
该MAX4376/MAX4377/MAX4378单,双和四精度高边电流检测放大器节省空间的封装。它们的特点是缓冲电压输出,消除了对增益设置电阻器的需要,并为今天的笔记本电脑,蜂窝电话的理想,并在目前的监测是至关重要的其他系统。这些精密设备提供三种固定增益为20,50版本,和100   高边电流监测,特别是在电池供电系统非常有用,因为它不干扰地面道路的电池充电器。输入共模范围0至+28 V的电源电压是独立的,并确保电流检测反馈仍然是可行的,即使在连接到一个深度放电的电池组。   满量程电流值可以设置通过选择合适的电压增益和外部检测电阻。这种能力提供了集成性和灵活性高的水平,在一个简单和紧凑电流检测的解决方案。   该MAX4
[模拟电子]
MAX4376/MAX4377/MAX4378高边<font color='red'>电流检测</font>放大器
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved