一、 软件平台与硬件平台
软件平台:
1、操作系统:Windows-8.1
2、开发套件:ISE14.7
3、仿真工具:ModelSim-10.4-SE
硬件平台:
1、 FPGA型号:Xilinx公司的XC6SLX45-2CSG324
2、 VGA接口
3、 液晶显示器
二、 原理介绍
VGA(Video Graphics Array)即视频图形阵列,是IBM在1987年推出的使用模拟信号的一种视频传输标准,在当时具有分辨率高、显示速率快、颜色丰富等优点,在彩色显示器领域得到了广泛的应用。这个标准对于现今的个人电脑市场已经十分过时。即使如此,VGA仍然是最多制造商所共同支持的一个标准,个人电脑在加载自己的特殊驱动程序之前,都必须支持VGA的标准。
VGA接口实物所示
左边带针的叫VGA公头,右边带槽的叫VGA母头。
VGA接口的特点:
1、 VGA接口不支持热插拔
VGA接口跟HDMI接口一样是不支持热插拔的。热插拔是指一般带电状态下对于接插件的插入或是拔除,并不只是针对有电源接口或者带供电的接口的接插件,而是所有。在运行状态时,插拔会产生耦合电流,电流不稳造成硬件烧坏,导致笔记本的接口端的保护受到冲击。就像U盘不能再一个时间段多次在一个端口插拔使用一样。各种电器的外露端子都会有金属的部分,它们都是要求接地的,但是不同的电器之间的地并不一定相同,比如一台DVD的地和一台电视机的接地都是相对于本身系统而言。
当端子插入时,首先要建立共同的地来对传输的信号作参考,这就要依靠端子和传输线上的金属部分了,金属部分接地同时也是对信号的屏蔽和保护。两个地相接触一瞬间,会有很高的尖峰脉冲产生,这种脉冲如果不加以滤除可能会直达芯片并将其损坏。另外还有一种是ESD,即静电损坏,这种更难以避免,因为在电子产品上,只能去防护,ESD的持续时间会更短US级别。所以正规的电子产品对于金属端子的接地有比较高的要求,同时在信号线上增加ESD防护器件来避免热插拔的损坏。但实际上很多厂家为了节省成本而偷工减料,或者是对热插拔的防护意识不够导致设计不合理,使得用户会出现热插拔损坏电器的现象产生。
2、 VGA不能传输音频
因为视频是VGA信号,而音频信号不是,所以VGA不能传输音频,只能传输视频。相信这就是为什么这几年极度的需求创新转换器的原因。VGA不支持音频传输也是给很多消费者带来烦恼,这最好的办法其实就是购买一款转换器,VGA转HDMI或者HDMI转VGA,达到视频传输的同时还支持音频信号的输出,一举两得。但是不要只想着转换器的输入与输出成问题,同时想想音频输出口,3.5mm是音频输出信号的重要连接线。购买时可以考虑想转换器有没有带3.5mm的音频输出口,然后另外购买一条音频线。
3、 VGA接口是一种D型接口,上面共有15针孔,分成三排,每排五个。其中比较重要的是3根RGB彩色分量信号和2根扫描同步信号HSYNC和VSYNC针。其引脚编号图如下图所示:
其中每个管脚的详细定义如下表所示
管脚 | 名称 | 定义 |
1 | RED | 红基色(75Ω,0.7Vp-p) |
2 | GREEN | 绿基色(75Ω,0.7Vp-p) |
3 | BLUE | 蓝基色(75Ω,0.7Vp-p) |
4 | ID2 | 地址码(显示器标识位2) |
5 | GND | 地 |
6 | RGND | 红色地 |
7 | GGND | 绿色地 |
8 | BGND | 蓝色地 |
9 | KEY | 保留 |
10 | SGND | 同步信号地 |
11 | ID0 | 地址码(显示器标识位0) |
12 | ID1 | 地址码(显示器标识位1) |
13 | HSYNC | 行同步信号 |
14 | VSYNC | 场同步信号 |
15 | ID3 | 地址码(显示器标识位3) |
VGA接口时序详解
VGA 显示器扫描方式从屏幕左上角一点开始,从左向右逐点扫描,每扫描完一行,电子束回到屏幕的左边下一行的起始位置,在这期间,CRT 对电子束进行消隐,每行结束时,用行同步信号进行同步;当扫描完所有的行,形成一帧,用场同步信号进行场同步,并使扫描回到屏幕左上方,同时进行场消隐,开始下一帧。完成一行扫描的时间称为水平扫描时间,其倒数称为行频率;完成一帧(整屏)扫描的时间称为垂直扫描时间,其倒数称为场频率,即屏幕的刷新频率,常见的有 60Hz,75Hz 等等,但标准的 VGA 显示的场频 60Hz。其扫描示意图如下图所示
在对VGA扫描方式有一个直观的感受以后接下来在看一看VGA接口的详细时序与各个参数的定义。VGA的详细时序如下图所示:
总的来说,VGA的时序主要包括行时序与场时序两个部分。
其中行时序主要包括:行同步(Hor Sync) 、行消隐(Hor Back Porch) 、行视频有效(Hor Active Video)和行前肩(Hor Front Porch)这四个参数,行时序的时序图如下图所示
而场时序主要包括:场同步(Ver Sync) 、场消隐(Ver Back Porch) 、场视频有效(Ver Active Video)和场前肩(Ver Front Porch)这四个参数,场时序的时序图如下图所示
需要注意的有三点:
1、行时序是以”像素”为单位的, 场时序是以”行”为单位的。
2、VGA 工业标准显示模式要求:行同步,场同步都为负极性,即同步脉冲要求是负脉冲。
3、VGA 行时序对行同步时间、 消隐时间、 行视频有效时间和行前肩时间有特定的规范, 场时序也是如此。常用VGA 分辨率时序参数如下表所示
其中:
Pixel Clock = (Screen Refresh Frequency)*(Hor Active Video + Hor Front Porch + Hor Synv Pulse + Hor Back Porch)* (Ver Active Video + Ver Front Porch + Ver Synv Pulse + Ver Back Porch)
以640x480,60Hz这种分辨率格式来说,25.175MHz = 25175000Hz = 60*(640 + 16 + 96 + 48)*(480 + 11 + 2 + 31) = 60 * 800 * 525
三、 目标任务
1、编写VGA驱动代码,并用ModelSim对时序进行仿真,然后下载到开发板中使屏幕产生彩色条纹
2、在上个任务的基础上,把一张存在ROM里面的图片数据显示到显示器上
四、 设计思路与Verilog代码编写
4.1、 VGA驱动模块的接口定义与整体设计
Verilog编写的VGA模块除了Red,Green,Blue三基色、行同步HS以及场同步VS以外还要包括时钟、复位信号。其框图如下所示
其中:
I_clk是系统时钟;
I_rst_n是系统复位;
O_hs是行同步信号;
O_vs是场同步信号;
O_red是红色分量;
O_green是绿色分量;
O_blue是蓝色分量;
上面的模块框图中没有看到测试数据(彩条或者图片)的输入端口,原因是由于VGA的逻辑比较简单,所以我准备把发送测试图案(彩条或者图片)的逻辑也直接集成到vga_driver模块中,这样可能更加方便理解。但是对于实际一个比较复杂的项目来说,最好还是把各个模块独立开来,这样更加方便二次移植。在写代码之前,先了解一个关于图片的分辨率与位深度的知识点。
4.2、 图片的分辨率、图片的尺寸与位深度
图片的分辨率指图像中存储的信息量,是每英寸图像内有多少个像素点,它决定了位图图像细节的精细程度。描述分辨率的单位有:dpi(dots per inch)点每英寸、lpi(line per inch)线每英寸和ppi(pixel per inch)像素每英寸。
图片的尺寸是指一幅图片长度和宽度各占多少像素,我们平常说的一张640×480的图片指的就是这张图片的长度有640个像素点,宽度有480个像素点
位深度是指图片的每个像素是用多少位(bit)来表示的。比如黑白二色的图像是数字图像中最简单的一种,它只有黑、白两种颜色,也就是说它的每个像素只有1位颜色,位深度是1,用2的零次幂来表示;考虑到位深度平均分给R, G, B和Alpha,而只有RGB可以相互组合成颜色。所以4位颜色的图,它的位深度是4,只有2的4次幂种颜色,即16种颜色或16种灰度等级 )。8位颜色的图,位深度就是8,用2的8次幂表示,它含有256种颜色 ( 或256种灰度等级 )。24位颜色可称之为真彩色,位深度是24,它能组合成2的24次幂种颜色,即:16777216种颜色 ( 或称千万种颜色 ),超过了人眼能够分辨的颜色数量。当我们用24位来记录颜色时,实际上是以2^(8×3),即红、绿、蓝 ( RGB ) 三基色各以2的8次幂,256种颜色而存在的,三色组合就形成一千六百万种颜色。除了上面这几种情况以外,有的图片的位深度是16位,其中红基色占5位,绿基色占6位,蓝基色占5位,他们一共可以组成2^16中颜色。
在电脑上用选中图片以后,然后鼠标右键在菜单中点击属性,然后在详细信息选项卡中就能查看图片的各个详细信息了,上面这张图片的信息如下图所示
由上面的信息可知这张图片的大小为128*128。水平分辨率与垂直分辨率为96dpi(dots per inch),位深度为24-bit。
4.3、 原理图分析
在写代码之前,先来分析一下我的开发板的VGA接口原理图。由于FPGA输出的RGB数据为数字信号,而VGA接口的RGB数据为模拟信号,所以需要一个数模转换器把FPGA输出的数字信号转化为VGA接口的模拟RGB数据输出。一般情况下,为了保证输出数据的保真度,都会使用一个专用的数模转换芯片(比如ADV7123)来实现这个数模转换的功能,但是在我的开发板上为了简单起见,设计了一个电阻匹配网络来实现这个数模转换的功能,FPGA输出的RGB三基色数字信号一共占16-bit,其中Red分量占5-bit,Green分量占6-bit,Blue分量占5-bit。下面是VGA接口部分的原理图
4.4、 vga_driver模块显示彩条Verilog代码编写
有了上面的基础之后就可以开始着手编写代码,现在在回过头去看行时序与场时序,其实可以发现VGA的时序真的是非常简单。
对行时序来说,只需要定义一个计数器,当计数器在像素时钟的作用下计满一行的总点数后清零,然后利用assign语句在计数值为Hor Sync期间把行时序信号拉低产生一个低脉冲就可以了。场时序与行时序非常类似,当行计数器计满一行了场计数器才加1,当计满一场的时间后,计数值清零,然后利用assign语句在Ver Sync期间把场时序信号拉低产生一个低脉冲就OK了。
有了行时序与场时序以后,接下来就是在Hor Active Video和Ver Active Video均有效的期间往Red,Green,Blue三个分量送数据,数据就会在在屏幕上显示出来了。而Hor Active Video有效的期间正是行计数器的计数值在大于(Hor Sync + Hor Back Porch),小于(Hor Sync + Hor Back Porch + Hor Active Video)的时候,而Ver Active Video有效的期间正是场计数器的计数值在大于(Ver Sync + Ver Back Porch),小于(Ver Sync + Ver Back Porch + Ver Active Video)的时候,所以在代码里面可以利用assign语句产生一个激活标志,当激活标志为高的时候给Red,Green,Blue三个分量送数据,数据就会在屏幕显示出来了。
下面以分辨率为640x480为例来编写vga_driver的代码,由前面的分辨率时序参数表可知,640x480分辨率的像素时钟为25.175Hz,但实际并不需要这么精确的时钟频率,我们取25MHz就可以了,我的开发板的时钟频率为50MHz,所以只需要简单的写一个二分频逻辑就可以得到这个像素时钟了。如果你想显示其他分辨率的图片,比如800x600分辨率的时钟频率是40MHz,这时候就需要用FPGA内部的Clocking Wizard IP核来得到这个40MHz的时钟,Clocking Wizard IP核内部回调用FPGA的PLL资源对输入频率进行处理来得到想要的输出频率。
下面是VGA接口产生彩条的完整代码
module vga_driver
(
input I_clk , // 系统50MHz时钟
input I_rst_n , // 系统复位
output reg [4:0] O_red , // VGA红色分量
output reg [5:0] O_green , // VGA绿色分量
output reg [4:0] O_blue , // VGA蓝色分量
output O_hs , // VGA行同步信号
output O_vs // VGA场同步信号
);
// 分辨率为640*480时行时序各个参数定义
parameter C_H_SYNC_PULSE = 96 ,
C_H_BACK_PORCH = 48 ,
C_H_ACTIVE_TIME = 640 ,
C_H_FRONT_PORCH = 16 ,
C_H_LINE_PERIOD = 800 ;
// 分辨率为640*480时场时序各个参数定义
parameter C_V_SYNC_PULSE = 2 ,
C_V_BACK_PORCH = 33 ,
C_V_ACTIVE_TIME = 480 ,
C_V_FRONT_PORCH = 10 ,
C_V_FRAME_PERIOD = 525 ;
parameter C_COLOR_BAR_WIDTH = C_H_ACTIVE_TIME / 8 ;
reg [11:0] R_h_cnt ; // 行时序计数器
reg [11:0] R_v_cnt ; // 列时序计数器
reg R_clk_25M ;
wire W_active_flag ; // 激活标志,当这个信号为1时RGB的数据可以显示在屏幕上
//////////////////////////////////////////////////////////////////
//功能:产生25MHz的像素时钟
//////////////////////////////////////////////////////////////////
always @(posedge I_clk or negedge I_rst_n)
begin
if(!I_rst_n)
R_clk_25M <= 1'b0 ;
else
R_clk_25M <= ~R_clk_25M ;
end
//////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////
// 功能:产生行时序
//////////////////////////////////////////////////////////////////
always @(posedge R_clk_25M or negedge I_rst_n)
begin
if(!I_rst_n)
R_h_cnt <= 12'd0 ;
else if(R_h_cnt == C_H_LINE_PERIOD - 1'b1)
R_h_cnt <= 12'd0 ;
else
R_h_cnt <= R_h_cnt + 1'b1 ;
end
assign O_hs = (R_h_cnt < C_H_SYNC_PULSE) ? 1'b0 : 1'b1 ;
//////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////
// 功能:产生场时序
//////////////////////////////////////////////////////////////////
always @(posedge R_clk_25M or negedge I_rst_n)
begin
if(!I_rst_n)
R_v_cnt <= 12'd0 ;
else if(R_v_cnt == C_V_FRAME_PERIOD - 1'b1)
R_v_cnt <= 12'd0 ;
else if(R_h_cnt == C_H_LINE_PERIOD - 1'b1)
R_v_cnt <= R_v_cnt + 1'b1 ;
else
R_v_cnt <= R_v_cnt ;
end
assign O_vs = (R_v_cnt < C_V_SYNC_PULSE) ? 1'b0 : 1'b1 ;
//////////////////////////////////////////////////////////////////
assign W_active_flag = (R_h_cnt >= (C_H_SYNC_PULSE + C_H_BACK_PORCH )) &&
(R_h_cnt <= (C_H_SYNC_PULSE + C_H_BACK_PORCH + C_H_ACTIVE_TIME)) &&
(R_v_cnt >= (C_V_SYNC_PULSE + C_V_BACK_PORCH )) &&
上一篇:BLE广播包基础知识讲解
下一篇:如何把视频转换成音频 视频转换成音频的原理是什么
推荐阅读最新更新时间:2024-11-14 23:44
- 在隔离应用中使用 AD7740
- LT3971、3.3V 降压转换器的典型应用电路
- M5275EVB: MCF5275 Evaluation Board
- TB62750FTG 白光 LED 升压型 DC/DC 转换器的典型应用
- NCV2001SQ2T2G 0.9V单电源运算放大器用作方波振荡器的典型应用电路
- MC-306,ML7105-00x蓝牙32.768kHz晶体单元的振荡电路和选择指南
- LT6657BHMS8-5 负分流模式基准的典型应用电路
- AM6TW-4818DH35Z ±18V 6 瓦单路输出 DC/DC 转换器的典型应用
- EMO_Charge
- LTC3622EMSE 5V/3.3V Vout 突发模式操作应用同步降压稳压器的典型应用电路
- CGD和Qorvo将共同革新电机控制解决方案
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- 玩法进阶,浩亭让您的PCB板端连接达到新高度!
- 长城汽车研发新篇章:固态电池技术引领未来
- 纳芯微提供全场景GaN驱动IC解决方案
- 解读华为固态电池新专利,2030 叫板宁德时代?
- 让纯电/插混车抓狂?中企推全球首款-40℃可放电增混电池,不怕冷
- 智驾域控知多少:中低端车型加速上车,行泊一体方案占主体
- Foresight推出六款先进立体传感器套件 彻底改变工业和汽车3D感知