汽车DCDC开关电源的EMI噪声源分析

发布者:xxoke624最新更新时间:2023-08-22 来源: elecfans关键字:汽车DCDC  开关电源 手机看文章 扫描二维码
随时随地手机看文章

随着汽车智能化的普及,车上会装配越来越多功能复杂的电子零部件,例如最近几年比较热门的自动驾驶,智能座舱等。这些科技感十足的产品,都需要汽车级DCDC 电源来供电, 而DCDC开关电源又是EMI的源头,是汽车电子绕不过去的难题。


我们将分三期来讨论DCDC开关电源EMI问题, 分别是:

DCDC噪声源分析

汽车级DCDC如何通过芯片设计来优化EMI

汽车DCDC系统EMI优化设计

本期电源小课堂,我们首先来给大家分析下DCDC开关电源的噪声源。

我们以常用的降压型Buck为例,下图是一个典型的Buck电路:

32762ede-2b6b-11ee-a368-dac502259ad0.png

图2

Buck电路工作有如下两个工作过程:

32cb1f02-2b6b-11ee-a368-dac502259ad0.png

图3 上管Q1开通,电感电流线性上升

332a6c00-2b6b-11ee-a368-dac502259ad0.png

图4 下管Q2开通时,电感电流线性下降

由于开关Q1,Q2的轮流导通,则输入电容Cin/Q1/Q2这个环路A1的区域的电流是不连续的,如下图:

3344a160-2b6b-11ee-a368-dac502259ad0.png

图5

A1区就是我们常说的高频电流环,这个不连续的电流就是di/dt EMI噪声源,而输出的环路由于电感电流是连续的三角波,所以噪声较小。

DCDC 的另外一个噪声源就是开关节点SW的dv/dt噪声源,当上下管轮流导通时,SW的电压在高低高低的变化,SW节点的电压变化就形成了dv/dt噪声源。

33bdef16-2b6b-11ee-a368-dac502259ad0.png

图6

那么知道DCDC两大噪声源di/dt和dv/dt,他们是怎么产生EMI问题的呢?

首先我们先来看看di/dt 的EMI问题。

我们将典型的Buck电路和传导测试的LISN网络画到一起,如下图:

33de51b6-2b6b-11ee-a368-dac502259ad0.png

图7

分析噪声源时,我们可以用戴维南等效电路来分析,Q1上的不连续的电流,产生了di/dt噪声, 我们可以用一个等效的电流源ISW代替,Q2上有电压变化,我们可以用一个等效电压源 VSW 代替,等效电路如下:

33f1502c-2b6b-11ee-a368-dac502259ad0.png

图8

根据叠加定理,单独分析 ISW di/dt噪声时, VSW 短路,简化模型如下,ISW噪声可以通过LISN网络,被LISN网络的两个50ohm电阻测到,产生了一个差模噪声干扰:

34299e0a-2b6b-11ee-a368-dac502259ad0.png

图9 

再单独分析电压源 VSW ,电流源ISW则需要开路,简化模型如图。

这个时候,其实看到VSW跟LISN网络断开,也就是说VSW不产生差模噪声。

34820004-2b6b-11ee-a368-dac502259ad0.png

图10 电流源短路

34a25016-2b6b-11ee-a368-dac502259ad0.png

图11 简化后模型

通过以上分析似乎di/dt的噪声源似乎很容易处理,如果只是差模噪声,那di/dt的EMI就非常容易了,只需要在输入端加差模LC滤波器,但实际上,很多工程师都发现,输入加了差模PI滤波器,di/dt的EMI问题依然存在,特别是高频段的EMI问题。

其实,实际电路中,会有寄生电感Lp和寄生电容Cp,如下图所示:

随着频率的升高,寄生电感Lp阻抗增加,寄生电容Cp阻抗降低,差模电流路径将被Lp阻断,同时寄生电容Cp将提供一个路径,在高频段di/dt通过LISN,以及寄生电容Cp形成一个回路,由此可见,di/dt在高频段将转换成共模噪声了。

34d19196-2b6b-11ee-a368-dac502259ad0.png

图12

解决di/dt的高频的共模问题, 也就变成了如何优化寄生电感Lp了,我们会在接下来的微信小文章中来分享具体的方法。

那么dv/dt 高频噪声,是怎么被LISN网络测试的?

上面我们分析了VSW不产生差模噪声,那么VSW有没有共模噪声呢?

还是用之前的模型,并将电路的寄生参数画出来,开关节点SW 对大地是有寄生电容Cpsw,VSW的电压变化,会在寄生电容Cpsw产生电流,dv/dt 通过寄生电容Cpsw回到大地,然后回到LISN网络,简化模型如图,所以dv/dt产生一个共模噪声。

35054874-2b6b-11ee-a368-dac502259ad0.png

图13 Dv/dt噪声源传输路径

352d4ca2-2b6b-11ee-a368-dac502259ad0.png

图14 简化后模型


关键字:汽车DCDC  开关电源 引用地址:汽车DCDC开关电源的EMI噪声源分析

上一篇:模糊控制在汽车伺服控制系统中有哪些应用
下一篇:汽车ECU诊断Debounce算法介绍

推荐阅读最新更新时间:2024-11-13 11:27

开关电源电路设计秘笈之发挥电源效率最大化
在本篇电源设计秘笈中,我们将讨论如何使用相同的级数最大化特定负载电流的电源效率。我们建议使用如下输出电流函数来计算电源损耗:     下一步是利用上述简单表达式,并将其放入效率方程式中:     这样,输出电流的效率就得到了优化(具体论证工作留给学生去完成)。这种优化可产生一个有趣的结果。 当输出电流等于如下表达式时,效率将会最大化。     需要注意的第一件事是,a1项对效率达到最大时的电流不产生影响。这是由于它与损耗相关,而上述损耗又与诸如二极管结点的输出电流成比例关系。因此,当输出电流增加时,上述损耗和输出功率也会随之增加,并且对效率没有影响。需要注意的第二件事是,最佳效率出现在固定损耗和传导损耗相等的某个点上。这就是
[电源管理]
<font color='red'>开关电源</font>电路设计秘笈之发挥电源效率最大化
开关电源原理与设计(连载九)并联式开关电源输出电压滤波电路
1-4-2.并联式开关电源输出电压滤波电路 上面已经知道,当并联式开关电源不带输出电压滤波电路时,输出脉冲电压的幅度将非常高。但在应用中,大多数并联式开关电源输出电压还是经过整流滤波后的直流电压,因此,一般开关电源的输出电路都带有整流滤波电路。 图1-12是带有整流滤波功能的并联式开关电源工作原理图。图1-12中,Ui是开关电源的工作电压,L是储能电感,eL为电流iL在储能电感两端产生的反电动势,K是控制开关,R是负载。而图1-13、图1-14、图1-15分别是并联式开关电源控制开关K工作于占空比为0.5、 0.5、 0.5时,图1-12电路中各点的电压、电流波形。图图1-13、图1-14、图1-15中Ui是开关电源的输入电压,u
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载九)并联式<font color='red'>开关电源</font>输出电压滤波电路
基于CPLD的软开关电源数字控制器设计
   1 引言   近年来,随着大功率 开关电源 的发展,对控制器的要求越来越高,开关 电源 的数字化和智能化也将成为未来的发展方向。   目前,我国的大功率开关电源多采用传统的模拟控制方式,电路复杂,可靠性差。因此,采用集成度高、集成功能强大的数字控制器设计开关电源控制器,来适应不断提高的开关电源输出可编程控制、数据通讯、智能化控制等要求。    2.数字控制器设计   本文设计的数字控制器,采用TI公司24X系列DSP控制器中的TMS320LF2407A芯片作为主控制器,主要功能模块包括:(1)DSP与可编程逻 辑器件CPLD相配合实现全桥移相谐振软开关驱动(2)偏磁检测电路;(3)其他功能,如数据采集、保护及外部接口等。
[电源管理]
基于CPLD的软<font color='red'>开关电源</font>数字控制器设计
开关电源功率因数校正电路设计与应用实例之:概述(二)
(6) 开关电源的功率因数 开关电源以其效率高、功率密度高而在电源领域中占主导地位,开关电源多数是通过整流器与电力网相接的,经典的整流器是由二极管或晶闸管组成的一个非线性电路,在电网中会产生大量的电流谐波和无功功率而污染电网,成为电力公害。传统的开关电源存在一个致命的弱点,即功率因数较低,一般仅为0.45~0.75,而且其无功分量基本上为高次谐波,其中三次谐波的幅度约为基波幅度的95%,五次谐波的幅度约为基波幅度的70%,七次谐波的幅度约为基波幅度的45%,九次谐波的幅度约为基波幅度25%。 开关电源已成为电网最主要的谐波源之一,针对高次谐波的危害,从”//)年起国际上开始以立法的形式限制高次谐波,传统的开关电源在此限制之列。我国
[电源管理]
<font color='red'>开关电源</font>功率因数校正电路设计与应用实例之:概述(二)
恒流开关电源充电器电路图
电子发烧友提供了恒流开关 电源充电器 电路图,希望对您的工作学习有所帮助,图中给出了元件参数,其具体电路图如下所示:
[电源管理]
恒流<font color='red'>开关电源</font>充电器电路图
设计出更可靠电源_需要注意的几点
1 引言 开关电源是各种系统的核心部分。开关电源的需求越来越大,同时对可靠性提出了越来越高的要求。涉及系统可靠性的因素很多。目前,人们认识上的主要误区是把可靠性完全(或基本上)归结于元器件的可靠性和制造装配的工艺,忽略了系统设计和环境温度对可靠性的决定性的作用。据美国海军电子实验室的统计,整机出现故障的原因和各自所占的百分比。 在民用电子产品领域,日本的统计资料表明,可靠性问题80%源于设计方面(日本把元器件的选型、质量级别的确定、元器件的负荷率等部分也归入设计上的原因)。以上两方面的数据表明,设计及元器件(元器件的选型,质量级别的确定,元器件的负荷率)的原因造成的故障,在开关电源故障原因中占80%左右。减少这两方面造成
[电源管理]
基于DSP实现的开关逆变电源
1 引言 随着工业和科学技术的发展,用户对电能质量的要求越来越高。包括市电在内的所有原始电能可能满足不了用户的要求,必须经过处理后才能使用,逆变技术在这种处理中起到了重要的作用。传统的逆变技术多为模拟控制或模拟与数字相结合的控制系统,其缺点为 1)控制电路的元器件比较多,体积庞大,结构复杂; 2)灵活性不够,硬件电路一旦设计完成,控制策略就不能改变; 3)调试比较麻烦,由于元器件特性的差异,致使电源一致性差,且模拟器件的工作点漂移,会导致系统参数的漂移,从而给调试带来不便。 因此,传统的逆变器在许多场合已不适应新的要求。 随着高速、廉价的数字信号处理器(DSP——Digital Signal Processor)的问世,于是便出现
[嵌入式]
基于DSP实现的开关逆变电源
【技术视点】明纬12V开关电源电路原理分析
该开关电源属于小功率开关电源,输入220V交流市电,输出12V直流电,最大输出电流1.3A,主要应用于小型设备的供电,比如楼宇监控设备等。其电原理图如图1所示。其控制核心器件为脉宽调制集成电路TL3843P(内含振荡器、脉宽调制比较器、逻辑控制器,具有过流、欠压等保护控制功能,最高工作频率可达500MHz.启动电流仅需ImA)。各引脚功能如下:(1)脚是内部误差放大器的输出端,通常与(2)脚之间有反馈网络,确定误差放大器的增益。(2)脚是反馈电压输入端,作为内部误差放大器的反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。(6)脚过流检测输入端,当接人的电压高于1V时,禁止驱动脉冲的输出。(
[电源管理]
【技术视点】明纬12V<font color='red'>开关电源</font>电路原理分析
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved