基于ADAS的自动泊车功能数据分发服务该如何设计呢?

发布者:Enchanted2021最新更新时间:2024-01-16 来源: elecfans关键字:ADAS 手机看文章 扫描二维码
随时随地手机看文章

随着汽车电动化、智能网联化的不断发展,汽车控制系统将面临大量功能增加及技术升级,其中的电子电器架构逐渐趋向于中央计算集中化。针对高级驾驶辅助系统(ADAS)的自动泊车功能,对基于车载以太网的分布式实时通信(DDS)协议开展架构设计,通过多种异构传感器信息的采集和传输,实现自动泊车功能数据的实时交换。从实车检测效果来看,该设计方案可以满足当前驾驶辅助系统自动泊车功能的需求。


0 前言

目前,国内汽车驾驶辅助系统控制器之间通信大多采用控制器局域网络(CAN)总线协议或带灵活可变数据波特率的控制器局域网络(CAN-FD)总线协议,少数采用可扩展面向服务的IP 中间件(SOME/IP)协议。随着汽车智能化、网联化的发展,大量数据需要高速传输和交换,且对数据的可靠性要求也越来越高,CAN 总线协议已经逐渐满足不了大量数据传输的需求,SOME/IP 协议也满足不了大数据、多节点、高质量服务的应用场景,因此分布式实时通信(DDS)协议作为多域控制器之间的通信,被逐步应用于汽车电子系统中[1]。

DDS 协议是一套通信协议和应用程序编程接口的标准,其基于发布者和订阅者模型,提供了以数据为中心的连接服务。DDS 协议的功能介于操作系统和应用程序之间,使得各控制模块之间可以互相通信,且提供了低延迟、高可靠的通信,以及可扩展的架构。

由于DDS 协议体量较大且占用处理器资源较多,所以在汽车高级驾驶辅助系统(ADAS)方面使用较少。DDS 协议对设计和性能的要求比较高,主要体现在处理器的选型、DDS 协议接口定义语言(IDL)设计和服务质量(QoS)设计部分。本文通过在TDA4VM 处理器上对基于ADAS 自动泊车功能的DDS 协议进行设计,从而使DDS 协议的大体量可以通过合理设计IDL 和QoS 来解决,以满足在车辆自动泊车功能方面的应用需求。

1 系统设计

用于ADAS 自动泊车功能的DDS 协议系统设计如图1 所示。由图1 可以看出,在ADAS 控制器(TDA4VM 处理器)上设计自动泊车功能是以DDS 协议来实现通信的,ADAS 控制器与动力底盘控制器之间通过CAN-FD 协议实现相互通信,其中SOC 为系统级芯片,MCU 为单片机。

a4db3e4c-8458-11ee-939d-92fbcf53809c.jpg

图1 基于ADAS 自动泊车功能的DDS 协议的系统设计

自动泊车功能的数据传输设计主要是将泊车功能的输入、输出信号通过ADAS 控制器内部的DDS 协议传输到动力底盘控制器上。因此,在DDS 设计过程中,需要注意ADAS 控制器中的SOC 端和MCU 端DDS 协议的IDL 设 计 和QoS 设计,以及如何通过合理的IDL 和QoS 设计使得ADAS 自动泊车功能能够满足给定的功能需求和性能需求[2]。

2 DDS 协议设计技术

基于ADAS 自动泊车功能的DDS 协议设计主要是在TDA4VM 处理器的R5F 内核与A72 内核进行设计部署,具体包括TDA4VM 处理器的DDS协议设计、DDS 协议中IDL 设计、DDS 协议中QoS设计这3 个部分。本文基于ADAS 自动泊车功能DDS 协议的部分设计进行技术分析。

2.1 TDA4VM 处理器的DDS 协议设计

ADAS 控制器采用的是德州仪器公司生产的TDA4VM 处理器。该处理器的优点是多核异构且选用适合的内核完成相应的任务,此外专用硬件加速器也可以处理特定任务,从而在性能、功耗和成本上达到最佳平衡。该处理器共有11 个内核,使用其中8 个内核实现ADAS 功能,分别是6 个R5F内核(其中2 个R5F 内核属于MCU 域,4 个R5F 内核属于MAIN 域(主域))和2 个A72 内核(属于MAIN 域),这8 个内核的通信采用DDS 协议实现。DDS 协议是基于操作系统和以太网协议才能实现通信功能的。

将辅助驾驶功能的需求部署在TDA4VM 处理器的不同内核上[3],推荐方案如图2 所示。将高算力的辅助驾驶功能或者传感器采集(例如摄像头、雷达、全球定位系统(GPS)、惯性测量单元(IMU)和地图等)部署在2 个A72 内核上,其中包含ADAS 的自动泊车功能。将需要具备功能安全的辅助驾驶功能或者是CAN 总线上的信号采集部署在MCU 域上,将不需要功能安全的辅助驾驶功能部署在MAIN 域的4 个R5F 内核上。

a4e725a4-8458-11ee-939d-92fbcf53809c.jpg

图2 TDA4VM 处理器上的DDS 部署方案

DDS 协议在TDA4VM 处理器上的部署情况如图2 所示。按照自动驾驶功能的需求,MCU 域上会有具备汽车安全完整性等级D 的要求,主要功能是对动力底盘相关的信号进行采集和处理;这些信号经过DDS 协议由TDA4VM 处理器内部以太网交换机传送给高算力的A72 内核,以供ADAS 自动泊车功能使用。MAIN 域上的4 个R5F 内核上主要部署了对ADAS 功能的监控及静默升级等功能。

2.2 DDS 协议的IDL 设计

IDL 是一种描述性语言,以独立于编程语言和操作系统处理器平台的方式来定义用于交互的数据类型和接口。本文采用DDS 协议的数据提供者和数据接收者IDL 设计数据格式。ADAS 的自动泊车功能与动力底盘控制通信的信号在TDA4VM处理器上通过MCU 域的R5F 内核和MAIN 域的A72 内核 使 用DDS 协 议 进行传输[4],在 此 过 程中IDL 的设计是评判处理器资源消耗情况的关键。在IDL 的设计中,DDS 协议的主题数量是衡量处理器资源消耗的关键指标,主题数量越多,资源消耗越大。特别是MCU 域资源比较紧张,在使用DDS 协议时需要重点考虑MCU 端的IDL 设计对资源的消耗。

2.2.1 上通信号

设计MCU 域时,将CAN 总线上采集的动力底盘信号从MCU 域的R5F 内核上传输到MAIN 域的A72 内核上,此过程中传输的信号称为上通信号。

考虑到MCU 域的内存问题,且CAN-FD 总线上的数据较多,为了节省资源,将自动泊车功能的输入输出信号和采集到的动力底盘信号解析部署在A72 内核上。在MCU 域上只进行数据接收、数据防丢失设计和监控接管。上通信号的IDL 设计方案按照CAN-FD 的信息结构格式来设计IDL 文件,IDL 文件在设计结构中包括CAN-FD 的ID 号、CAN-FD 报文周期、CAN-FD 报文长度和CANFD 报文的64 个字节数据。此设计方案对DDS 协议在MCU 域的部署来说只使用了1 个主题,从而节省了DDS 协议的资源消耗,也提高了MCU 域的运行效率。

2.2.2 下通信号

设计SOC 端时,对摄像头、雷达、GPS 和IMU等信号进行采集并融合处理,将相关的动力底盘信号传输到MCU 域的R5F 内核上。将A72 内核上的服务化数据通过DDS 协议传输到MCU 域上,此过程中出现的信号称为“下通信号”。

ADAS 自动泊车功能的下通信号主要是动力底盘信号,需要具备功能安全的要求,所以A72 内核上对于信号的处理只做服务化后的传输,在MCU 域上进行信号的解析和传输。下通信号的IDL 设计按照ADAS 的自动泊车功能来设计动力控制模块,此模块由控制动力的信号结构体(包含速度、加速度、距离与档位信号)、控制横向信号的结构体(包含横向使能与方向盘角度信号)、控制纵向信号的结构体(包含纵向使能、刹车扭矩与速度控制信号)和驻车控制的枚举结构(包含使能手刹信号与取消手刹信号)4 个部分组成。完成模块设计后可对动力底盘进行控制。基于功能安全的需求,下通信号需要4 个主题来定义,由于数据量小,使得MCU 域的资源消耗不会太大,同时下通信号也具备了功能安全的要求。此设计方案使得MCU域的资源消耗与信号安全达到了相对的平衡。

2.3 DDS 的QoS 设计

DDS 协议拥有灵活的QoS 选项和配置属性,其中包括数据的可用性控制、数据的交付方式控制、数据的时效性控制、用户信息的定义和分发、网络和数据资源的控制。用户可通过QoS 策略来控制数据在应用程序之间共享的方式。用户可依据应用场景的需求,选择相应的QoS 策略来满足通信质量的需求。

DDS 协议的数据提供者和数据接收者中最常用的QoS 选项有可靠性、历史性、资源限制、持久性、传输延迟性与心跳周期。DDS 协议需要设计QoS 属性的有参与者、数据提供者、数据接收者和主题4 个部分。DDS 协议的QoS 设计在MCU 和SOC 上有不同的实现方法:MCU 是静态加载,会以代码配置形式写入MCU 的程序中;SOC 可以是动态加载也可以是静态加载,此处采用可扩展标记语言(XML)文件的形式进行动态加载,灵活性较高。DDS 协议中有默认的QoS 设计,可随着DDS协议的运行而运行,新设计的QoS 会覆盖默认的QoS 中的相同配置。

2.3.1 MCU 的QoS 设计

按照ADAS 自动泊车功能的需求,MCU 的数据提供者和数据接收者的QoS 设计需求有所不同。数据提供者的QoS 设计属性有资源限制设计、历史性设计、心跳周期设计3 个部分配置,其他属性选择默认设计。在资源限制中,最大样本实例数为3、最大实例数为1、最大样本数为3,资源限制的设计是为了让写入数据的速度与读取数据的速度相匹配。数据提供者资源限制的最大远程读取节点限制为2,最大写入通道数为2,如此设计是为了限制读取端最大的节点数。在历史性设计中,历史数据深度设置为3,这可保证数据丢失补偿。在心跳周期设计中,心跳周期设置为250 ms。可实现DDS协议中,实时发布订阅(RTPS)协议包括对已丢失并重传消息的检测。

数据接收者的QoS 设计属性有资源限制设计、历史性设计2 个部分配置其他属性选择默认设计。在资源限制中,最大样本实例数为3、最大实例数为1、最大样本数为3,资源限制的设计是为了让写入数据的速度与读取数据的速度相匹配。数据接收者资源限制的最大远程读取节点限制为2,最大写入通道数为2。此设计是为了限制读取端最大的节点数。

2.3.2 SOC 的QoS 设计

根据ADAS 自动泊车功能的需求,将QoS 中的数据提供者和数据接收者XML 文件进行重新设计,保证SOC 的所有数据提供者和数据接收者的QoS 配置项都相同。其中,将QoS 的历史数据跟踪深度设置为3,可记录3 次历史数据且对数据丢失进行了补偿。此外也加入了选择可靠值属性,该设计方案是对数据的DDS 协议传输进行了加固,并将持久性的QoS 配置项设计为瞬态局持久性,这对数据提供者来说就是将发送的数据写入历史记录中且保存已发送数据,当数据出现丢失时,会将历史记录中的数据重新发送出去。

3 结果与分析

通过对DDS 协议在TDA4VM 处理器上的部署设计、DDS 协议的IDL 设计、DDS 协议的QoS 设计完成了MCU 域的R5F 内核和MAIN 域的A72内核的相互通信,实现了ADAS 自动泊车功能,同时使用基于DDS 协议的性能测试工具进行测试[5]。结果显示,基于DDS 协议从MCU 域到SOC 端(A72 内核)的通信测试结果延迟时间在2~4 ms。从实车检测效果来看,该方案可以满足当前ADAS自动泊车功能的需求。


4 结语

基于ADAS 自动泊车功能的DDS 设计,在TDA4VM 处理器上部署DDS 协议,能够实现数据的集中化分发,且在MCU 域上进行DDS 协议部署,可在系统资源紧张的情况下做到大量数据的接收和分发,从性能角度大幅优化了MCU 端DDS 协议带来的影响,为后期多域和跨域融合使用DDS 协议的设计奠定了基础。未来,最大的设计挑战可能还是MCU 端,由于系统资源紧缺且DDS 协议又是一个比较重要且耗费资源的协议,因此当DDS 设计的模块化变多时,MCU 端的工作负担会加重,从而影响自动驾驶功能在MCU 域上的运行效率。


关键字:ADAS 引用地址:基于ADAS的自动泊车功能数据分发服务该如何设计呢?

上一篇:传感器融合如何提高电池管理系统性能和电池寿命
下一篇:基于跨域计算新一代EE架构的SDV车辆特性开发

推荐阅读最新更新时间:2024-11-09 05:30

ADAS常见功能系统有哪些
我们都知道无人驾驶是汽车发展的未来。但是完全无人驾驶究竟何时才能实现,业界一直众说纷纭。然而在现实完全无人驾驶的道路上,高级驾驶辅助系统(ADAS)就成为了在现今技术及政策法规条件下的一个不错的选择。同时,很多ADAS功能已经大规模量产,不仅给汽车制造商提供更多差异化的产品设计选择,也为普通的消费者提供了更好的驾驶体验和安全保障。 高级驾驶辅助系统(Advanced Driving Assistance System)是利用安装在车上的各式各样传感器(毫米波雷达、激光雷达、单双目摄像头以及卫星导航),在汽车行驶过程中随时来感应周围的环境,收集数据,进行静态、动态物体的辨识、侦测与追踪,并结合导航地图数据,进行系统的运算与分析,
[嵌入式]
高通公司完成从SSW Partners收购Arriver业务
加速和增强高通技术公司的ADAS解决方案 图注:高通公司总裁兼首席执行官安蒙(左),高通技术公司高级副总裁兼汽车业务总经理Nakul Duggal(右) 2022年4月4日,圣迭戈——高通公司今日宣布已完成从SSW Partners收购Arriver™(安致尔)的交易,增强了高通技术公司为汽车制造商和一级供应商以规模化方式提供具有竞争力的开放式全集成先进驾驶辅助系统(ADAS)解决方案的能力。 高通技术公司高级副总裁兼汽车业务总经理Nakul Duggal表示:“高通技术公司已成为汽车行业的关键技术合作伙伴,而Arriver的驾驶辅助资产将使公司加速提供领先的ADAS解决方案,成为骁龙®数字底盘™平台的重要组成部
[汽车电子]
高通公司完成从SSW Partners收购Arriver业务
Hailo 与瑞萨联手实现汽车客户从 ADAS自动驾驶的无缝扩展
以色列特拉维夫2022年6月27日-- 行业领先的人工智能 (AI) 芯片制造商 Hailo 今日宣布与先进半导体解决方案的主要供应商 瑞萨 (Renesas) 共同合作,打造强大且高效的处理方案,实现机动车的先进驾驶辅助 ( ADAS ) 功能和 自动驾驶 (AD) 系统。 Hailo - 瑞萨 联合解决方案将使复杂的 ADAS 技术更容易应用于所有类型的汽车。 专为重型神经网络 (NN) 加速而设计的 Hailo -8 处理器,与强大的 瑞萨 R-Car V3H 和 R-Car V4H 片上系统 (SoC) 相结合,可为区域和集中式车辆 ECU 提供强大、可扩展、高效和具有成本效益的 ADAS 解决方案。从 L2+ 级
[汽车电子]
Hailo 与瑞萨联手实现汽车客户从 <font color='red'>ADAS</font> 到<font color='red'>自动</font>驾驶的无缝扩展
卡车高级驾驶辅助系统 (ADAS) 解决方案 -飞凌嵌入式
随着车辆保有量越来越多,我们时不时会看到有关交通事故的新闻,而且这些事故多数与大货车有关,以至于大货车成了很多人眼中的“马路杀手”。根据沃尔沃卡车事故研究小组调查数据表明,90%的卡车事故都或多或少是因为驾驶失误而发生,比如事故车辆的驾驶员一时分心或错误判断车速。 那么,有没有可能通过一些手段来降低这种事情的发生呢? 于是,各种辅助驾驶系统开始进入人们的视野。例如,在卡车上配备更高级的安全设备与安全系统来提高行车能见度,实现驾驶提醒等等。接下来,咱们从几个方面来说明辅助驾驶带来的帮助。 1、防疲劳驾驶辅助系统 从数据统计来看,疲劳驾驶往往是运输途中最大的安全隐患,解决它最好的办法就是保证休息,可是驾驶员在路上,由于各种
[嵌入式]
卡车高级驾驶辅助系统 (<font color='red'>ADAS</font>) 解决方案 -飞凌嵌入式
什么是ADAS摄像头?超小PMIC汽车摄像头解决方案分享
自动驾驶和人工智能时代的到来使得汽车摄像头的研究从单纯的传输图像转向对外通过算法感知、识别环境,对内增强驾驶员状态监测从而增强辅助驾驶功能。汽车感知系统的高要求使得人们对ADAS车载摄像头高应用性能的需求日益高涨。 什么是ADAS摄像头? 汽车ADAS(高级辅助驾驶)摄像头组包括应用最广泛的前视/环视摄像头、用于监测盲点的测视摄像头、用于捕捉倒车影像的后视摄像头,以及用于驾驶员监控系统的内置摄像头。 目前一辆ADAS功能车型的摄像头数量通常在5个以上,这些摄像头共同作用于汽车的360全景影像,测距,车道偏移,驾驶辅助等功能。 车载摄像头作为ADAS中的视觉算法的核心部分,相较于激光雷达拥有更低的成本、更高的动态观察
[嵌入式]
什么是<font color='red'>ADAS</font>摄像头?超小PMIC汽车摄像头解决方案分享
ADAS自动驾驶四大模块选用晶振有何要求?
近几年无人驾驶汽车(ADAS)热度非常高,不少汽企巨头纷纷入局,那么无人驾驶汽车需具备什么硬件设备呢? 自动驾驶汽车依靠人工智能(AI)、视觉计算、监控系统模块、雷达测距系统模块、和GPS全球定位模块协同合作,让汽车智能控制系统在没有人操作的情况下,自动的在安全模式下为用户驾驶汽车,这些模块在选用晶振时有什么要求? 对硬件正常工作的稳定性、精确度、抗干扰性等方面也提出了更高更严格的要求。芯片(又叫中央处理器,CPU)是汽车自动驾驶系统中负责数据处理的大脑,而给它提供信号的电子元器件是晶振。可想而知,芯片的高效响应性能离不开晶振不间断提供更稳定更精准的信号源。 01 监控系统模块 自动驾驶汽车的视频监控系统是在汽车上安置
[嵌入式]
<font color='red'>ADAS</font><font color='red'>自动</font>驾驶四大模块选用晶振有何要求?
基于安霸CV平台的ADAS/自动驾驶全系解决方案
2023年5月18日-19日,在吉利2023智能汽车技术论坛上,安霸半导体技术(上海)有限公司业务总监陈永江表示,我们已与多家Tier1及OEM深度合作,成功推出了ADAS、DMS、OMS、CMS等量产行泊一体项目。在车载芯片系列中,CVflow实现了算力性能的行业突破,其中CV3-AD单芯片算力超越了汽车域控芯片市场最高水平的3-6倍。 陈永江 | 安霸半导体技术(上海)有限公司业务总监 以下为演讲内容整理: 国内汽车市场快速发展,自动驾驶技术产品迭代的提升空间较大,这表明汽车行业还有很多发挥的机会。 关于安霸公司 安霸是一家专注于AI视觉感知SOC的半导体公司。2004年,公司在硅谷成立,2007年中
[汽车电子]
基于安霸CV平台的<font color='red'>ADAS</font>/<font color='red'>自动</font>驾驶全系解决方案
ADAS系统的工作原理及工作过程
一、高级驾驶辅助系统组成部分有哪些 高级驾驶辅助系统,英文名是Advanced Driving Assistance System,就是我们常说的adas系统,是增加汽车驾驶的舒适性和安全性的车载系统,ADAS系统的组成结构一般分为三部分: 1、GPS模块和CCD相机探测模块 通过GPS接收机接收GPS卫星信号,求出该车的经纬度坐标、速度、时间等信息,利用安装在汽车前部和后部的CCD相机,实时观察道路两旁的状况,判断危险发生并根据危险做出判断操作的过程。在行驶过程中,出现不同的危险状况,驾驶辅助系统都能够根据从GPS和CCD相机得到的信息,针对不同的行驶状况,做出正确精确的操作。 2、通信模块 通信模块可以发送检测到的相关信息
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved