FPGA平台架构用于复杂嵌入式系统

发布者:温柔的心情最新更新时间:2007-12-04 来源: 今日电子关键字:编程  路由  基站  测量 手机看文章 扫描二维码
随时随地手机看文章
设计嵌入系统的主要挑战来自于需要同时优化众多设计因素。这些需要优化的设计因素包括单位成本、NRE(不可回收工程)成本、功率、尺寸、性能、灵活性、原型制造时间、产品上市时间、产品在市场生存时间、可维护性、可重配置能力、工程资源、开发和设计周期、工具、硬件/软件划分,以及其他许多因素。

Virtex-II ProTM平台FPGA产品基于高性能的Virtex-IITM结构,为嵌入式系统设计提供了一个极灵活的解决方案。利用Virtex-II ProTM器件,嵌入式系统设计人员可以在单片器件内集成范围广泛的硬和软IP核心,其中的硬件和固件具有可升级能力,从而可延长产品的在市场生存时间。 Virtex-II 结构的可编程能力降低了系统开发时间并使单个平台FPGA解决方案可适用于多种应用。Virtex-II ProTM FPGA使系统设计人员可在整个开发周期中对系统进行优化,同时还为硬件和软件设计任务折衷提供了无与伦比的协同设计灵活性。硬件/软件系统划分允许设计 人员可以控制以效率最高的方式实现所需要的功能。

Virtex-II ProTM平台FPGA产品提供了一个可以满足多种应用的处理、DSP和连接功能要求的平台,这些应用包括光学网络系统、千兆位路由器、无线蜂巢式基站、 调制解调器阵列、专业视频广播系统、测试和测量设备、生物医疗系统、工业控制器,以及其他许多应用。下面我们重点列出了Virtex-II ProTM平台FPGA的主要特性和功能。

Rocket I/OTM 收发器

Virtex-II ProTM 器件提供了高达16个千兆位并串和串并收发器,可以支持不同的高速串行标准,如Gigabit Ethernet、 Fiber Channel、 Infiniband、 Serial ATA、 RapidIO、 3GIO、 Aurora、 和XAUI。其通道绑定功能可以结合多个通道提供高于3.125Gb/s的数据传输速率。Rocket I/OTM收发器支持物理媒体附加子层(串行化器、并串转换器、时钟和数据恢复、发送/接收缓冲器)和物理编码子层(8B/10B编码器/解码器和弹性缓 冲器)。

PowerPCTM 405 处理器

Virtex-II ProTM 器件可提供多达4个高性能、低功耗、高速IBM PowerPCTM 405微处理器核心。在器件中集成PowerPC核心是利用IP-Immersion架构完成的。IP-Immersion架构允许硬核心扩散分布到平台 FPGA结构中的任意位置,同时还可保持与周围逻辑阵列间的无与伦比的连接能力。利用处理器局部总线(PLB)和采用CoreConnect互连总线片上 总线架构的外设总线,处理器可以控制和管理多种外设资源。运行在300+MHz时钟下,能够提供420+ Dhrystone MIPS性能的PowerPCTM 405微处理器核心提供了众多下一代嵌入式系统所需要的处理能力。

18位×18位乘法器

Virtex-II ProTM 器件提供多达216个嵌入式18位×18位二进制补码乘法器。这些嵌入式乘法器为实现18位× 18位带符号乘法提供了一个快速高效的方法。一个乘法器模块与一个SelectRAM存储器块相关联。乘法器模块针对利用块SelectRAM一个端口的数据进行了优化。利用这些乘法器,读取/相乘/累加操作和DSP滤波器结构变得异常快速和高效率。SelectRAM存储器和乘法器资源都连接到四个交换矩阵以实现与通用布线资源的连接。

全局时钟

高频率设计需要低畸变的高级时钟分配。在多数大密度设计中通常需要大量全局时钟。所有的Virtex-II ProTM器件都包含16个全局时钟缓冲器,支持16个全局时钟区域。这些时钟域支持进行更高水平的逻辑集成,并免除了进行复杂的时钟树分析的需要。16 个时钟缓冲器还是“无毛刺”同步2:1复用器。这些复用器可以在任意时间在两个异步(或同步)时钟间进行切换。

数字时钟管理器(DCM)

Virtex-II ProTM器件提供多达8个数字时钟管理器(DCM)。每一个DCM都支持零延迟时钟缓冲、精确相位移动和频率合成控制。

DCM还支持对其输出时钟进行90°、180°和270°的相移。异常灵活的频率合成可提供输入时钟频率分数倍数或整数倍数的时钟输出频率。


片上存储器(OCM)控制器

OCM控制器在FPGA中的块RAM和嵌入式PowerPCTM405处理器核心执行单元间提供一个专用的接口。PowerPCTM核心上的OCM信号旨在提供对固定大小的指令和数据存储器空间的超快速访问。

OCM接口具有与缓存同样的访问时间。由于缓存为来自其它存储器资源的缓冲代码而保留,因此OCM减小了缓存的更新频率。双口块RAM可做为OCM在处理器核心和FPGA结构间实现一个高效率的共享式高速缓存存储器接口。

Block SelectRAM (BRAM) 资源

除了分布式 Select RAM存储器(可级联16位×1位)以外,Virtex-II ProTM器件还包含了大量18kbit的块状SelectRAM(BRAM)。BRAM存储器是真正双口(True Dual-Port)RAM,在器件内提供了大量快速分散的存储器块。BRAM存储器的总量随着Virtex-II Pro器件的规模而增长(高达3.8Mbit)。18Kb每块的BRAM块是可级联的,从而可支持更深和更宽的存储器设计,同时通过专门的布线资源使得时 序代价极小。

单端 SelectI/O 资源

对更复杂系统的需求、时钟速率的提高和对 更小芯片到芯片间延迟的要求推动了更高性能I/O的发展。Virtex-II ProTM FPGA系列包括了高度可配置的高性能的可支持范围广泛的I/O标准的单端SelectI/O模块。Virtex-II ProTM SelectI/O模块支持下列单端I/O标准:

GTL+、HSTL (I, II, III, 和 IV)、 SSTL3 (I, 和 II)、 SSTL2 (I 和 II) 、 LVTTL、 LVCMOS(15, 18, 25, 和 33)、PCI33_3、 PCI66_3、 PCIX 和 GTL。

数字控制阻抗匹配(DCI)

DCI为发射器和接收器提供了片上端接。这样 就不再需要电路板上大量的外部端接电阻,降低了电路板的布线困难和器件数量,同时由于消除了端头反射(发生在端接电阻离传输线的端点太远时),还改善了信 号完整性。利用DCI,端接电阻离输出驱动器或输入缓冲器尽可能近。因此,完全避免了端头反射。DCI动态地调整I/O阻抗,使其等于外部参考电阻。

软智力产权(IP)核心

软IP核心为设计增加了功能和灵活性。由于其灵活 性特点,还可利用软IP核心对产品进行较小的升级或对在设计的生命周期中段进行升级,从而延长产品生命周期。许多软核心都可用于Virtex-II ProTM器件。由于具有多达450万FPGA门,设计人员可在一块Virtex-II ProTM FPGA器件中集成多种不同的核心。

Gigabit Ethernet MAC、10/100 Ethernet MAC、多种不同的存储器控制器、ATM Utopia Level 2、总线仲裁器、 I2C、 UART、和SPI等就是Xilinx为Virtex-II ProTM 设计提供的IP核心的一些例子。Xilinx公司的System Generator 工具可利用CoreConnect互连总结架构自动集成PowerPCTM和选择并定制的软外设。

更大的集成度和更小的尺寸

大多数印刷电路板都布满了众多不同的器件,如存储器、逻辑器件、微处理器、端接匹配电阻,以及多种其他元器件。Virtex-II ProTM FPGA集成有嵌入式微处理器核心多通道Rocket I/OTM收发器,再配合丰富的软IP核心,从而在单个芯片中即集成了上面提到的多种器件。因此,这大大提高了灵活性、性能,并降低了材料清单成本。

可综合的软IP核心可以为设计带来多种功能,并提高设计的灵活性。软IP解决了许多上市时间问题,还简化了设计验证。图1示意出了一个典型千兆位以太网 路由器的框图。其中Memery Controller、FPGA、PLD以及Port Controller MAC模块可以利用Xilinx或其联盟IP合作伙伴所提供的软IP核心代替的数字器件。

Virtex-II ProTM的可编程特性使嵌入式系统设计人员可在整个开发周期中对系统进行优化,并为硬件和软件设计折衷提供了无与伦比的协同设计灵活性。软件 /硬件划分可提供效率最高的解决方案。以软件方式完成硬件任务成本较低但速度慢。用硬件来完成软件任务速度快但成本高且效率也不高。Virtex-II平 台FPGA器件可以在软件和硬件实施间实现实用的平衡,同时还可提供基于设计规范和要求的最佳解决方案。

当今的许多通信标准和协议还不成熟, 并仍处于持续的演化进行中。在很多情况下ASIC和ASSP解决方案并不适用,因为它们不能随着标准的演化而改变。FPGA是这种情况下的理想选择,因为 他们有可配置的结构,可以容易地实现、重新配置和升级(甚至可通过因特网)新的标准和协议。通信系统(或任何具有多种协议的系统)中存储的不同协议也要求 内置协议变换功能。Virtex-II ProTM FPGA可以非常好地完成此类重要任务。

更少的电路板器件也意味着需要更小的电路板空间,因此,系统成本中又可节约每层每平方英寸达0.22美元的成本。对于一块26层的电路板,这意味着每平方英寸平均5.88美元的成本。图2示意出图1中可实现成本/器件节约的地方。

总结

Virtex-II ProTM FPGA可在高性能FPGA结构中实现软IP核心,具有嵌入式硬微处理器核心、嵌入式Rocket I/O收发器、丰富的硬件和软件功能,并有优化的嵌入式设计工具链支持。这些都使得Virtex-II ProTM FPGA可以最有效的方式解决与嵌入式系统设计相关的几乎所有挑战。Virtex-II ProTM FPGA可满足产品上市时间、在市场生存时间、性能、成本、系统划分、灵活性、可重配置能力、工程资源和更短的设计周期等所有方面的要求。

关键字:编程  路由  基站  测量 引用地址:FPGA平台架构用于复杂嵌入式系统

上一篇:凌华科技推出基于Intel Core 2 Duo 的ETX模块 支持SATA
下一篇:FPGA平台架构用于复杂嵌入式系统

推荐阅读最新更新时间:2024-05-02 20:38

利用MEMS提高医疗设备流量测量精度
  流量传感器是众多医疗设备的关键器件,它被用来监视气体输出量以确保流量精确。目前可用的流量传感技术主要包括压差传感、正排量传感及叶轮传感。与那些不包含集成的信号放大与温度补偿电路的测量元件,微机电系统(MEMS)大流量传感器更容易集成(图1)。虽然MEMS大流量传感器具备许多优点,但由于其测量的流量比较大,所以价格一直偏高。   降低成本、减少空间、减轻重量的一个方法是在旁路通道设置低流量传感器来测量主通道上较大的流量。MEMS流量传感器旁路通道设置类似于差压传感器(间接测量气体流量,见图2).。与压差传感器相比,MEMS传感器在很低流量情况下依然可以提供更高的分辨率。图3描述了普通大流量传感器与压差传感器之
[医疗电子]
基于单片机的能耗测量 IC 简化辅助计量
引言 诸如智能插头和电器电度表等辅助计量 (sub-metering) 应用使消费者能够了解和控制其电能使用状况。其他的辅助计量应用(如服务器功率表)则可帮助 IT 部门优化服务器群的功耗。在设计辅助计量表时,像传感器、模拟前端 (AFE) 组件和微控制器 (MCU) 的选择之类的考虑因素对于决定总体系统成本与复杂性有着举足轻重的影响。作为一款有效的实施方案,其应易于设计并具有低量产成本,同时满足应用的主要需求 - 可靠地测量和报告电能消耗信息。本文将讨论 MSP430AFE2xx IC1 在能耗测量应用中的特性与优势。虽然 MSP430AFE2xx 完全适合公用事业级电力表中的能耗测量,不过本文将专门讨论其在辅助计量中的应用。
[单片机]
实时测量二氧化碳质量
为了确保其回收二氧化碳的质量,请看三得利啤酒有限公司之所以选择梅特勒-托利多的原因。 三得利啤酒(昆山)有限公司成立于1998年,是日本三得利株式会社在中国成功发展起来的企业之一。该公司位于江苏省昆山市,啤酒年产量达到200,000吨。该公司生产的啤酒遍销中国东北部市场,已经成为该地区的领导品牌之一。 减少二氧化碳的使用成本 二氧化碳在啤酒生产中是一个极为重要的原材料。过去, 啤酒厂不得不花费巨资从外部渠道购买高纯度二氧化碳。然而,在啤酒发酵过程中会产生大量高质量的CO2。通过回收利用这部分二氧化碳,可大大减少生产成本。 在以前,三得利啤酒(昆山)公司的二氧化碳回收系统通过在实验室人工取样来测量二氧化碳纯度。此方法存在两个问
[测试测量]
误差矢量幅度(EVM)测量怎样提高系统级性能
误差矢量幅度(EVM)测量怎样提高系统级性能 误差矢量幅度(EVM)是广为使用的系统级性能指标,许多通信标准将其定义为用于无线局域网(WLAN 802.11)、移动通信(4G LTE、5G)等应用的合规性测试。除此之外,它还是一个极为有用的系统级指标,可通过简单易懂的值来量化系统中所有潜在损害的综合影响。 大多数射频工程师都会接受有关大量射频性能参数的培训,例如噪声系数、三阶截取点和信噪比。了解这些性能参数对整体系统级性能的综合影响可能极具挑战性。EVM不评估多个单独的性能指标,而是反映整个系统的概况。在本文中,ADI将分析较低水平的性能参数如何影响EVM,并研究一些将EVM用于器件系统级性能优化的实际示例。同时展示如
[模拟电子]
误差矢量幅度(EVM)<font color='red'>测量</font>怎样提高系统级性能
10GBASE-T以太网信号完整性测量方案
以太网是个人电脑和消费电子非常重要的外围通讯接口。随着新一代以太网协议10GBASE-T的登场,在传输速度大幅提升的同时,对测试测量也带来了新的挑战。本文将重点介绍10GBASE-T以太网一致性测试面临的新的挑战以及相应的测量方案。 IEEE组织于2006年推出802.3an协议,即10GBASE-T以太网协议。该协议定义了基于RJ-45接口和双绞线传输介质的10Gbps以太网传输速率,与千兆网相比,速率提高了10倍。经历了三年的技术储备和市场酝酿,10GBASE-T以太网相关产品在2009年开始面世。在可以预见的未来几年内,10GBASE-T以太网将逐步取代千兆网成为市场的主流。对于这样一种新兴的个人电脑和消费电子外围通讯协议
[测试测量]
10GBASE-T以太网信号完整性<font color='red'>测量</font>方案
拥有超高测量精度功率分析仪问市:Yokogawa WT5000
近日,横河高精度功率分析仪WT5000在由欧洲《电子周刊》(Electronics Weekly)主办的年度Elektra颁奖典礼上荣获“年度测试产品”奖。这是WT5000在2019年获得的第二个国际大奖。 颁奖仪式于2019年12月4日在伦敦格罗夫纳豪斯酒店举行,出席仪式的嘉宾为具有业界影响力的的专业人士。17年来,该项活动一直都是行业中一大亮点,来自电子领域的领军人物齐聚一堂,庆祝各自取得的成就,并表彰电子行业的市场先锋。 横河测量技术(欧洲)有限公司的市场总监Kelvin Hagebeuk表示,“作为高精度仪器制造商Yokogawa中的一员我们非常激动,十分荣幸能再次斩获一项殊荣。Yokogawa以帮助客
[测试测量]
拥有超高<font color='red'>测量</font>精度功率分析仪问市:Yokogawa WT5000
示波器快速测量幅频特性的方法
在电路设计和调试中,常常需要测试系统的幅频特性,但是专业的网络分析仪价格昂贵,扫描速度慢,而且低频端通常不满足要求。 本文将介绍一种信号发生器扫描和示波器相结合的方法,快速绘制电路的幅频特性。 待测系统如下图示意 压控电流源电路图片 以下是详细步骤 1.连接各路系统 2.设置函数发生器输出为 VPP = 200mV Offset = 100mV SWEEP StartFreq = 1Hz SWEEP StopFreq = 1MegHz SWEEP Period = 0.1Sed 3.设置电流探头电源,进行校零,完成后,设置增益为200mA/Div. 4.将输出电流线穿入探头夹头,合紧,选择AC模式 5.打开示波器,
[测试测量]
示波器快速<font color='red'>测量</font>幅频特性的方法
PLC编程-梯形图逻辑和梯形图
什么是PLC? PLC 代表可编程逻辑控制器,是具有计算能力的工业规模设备,用于控制装配线、机器人单元、工业机械和其他制造环境中的生产过程。它们用于故障检测、高可靠性和可编程制造控制等过程。PLC 实时运行,因为它们的输入必须在非常短的时间内处理。其操作的及时性对于成功实现控制目的始终至关重要。几十年前引入 PLC 的主要动机是用更灵活的可编程控制器取代硬编码继电器系统。 PLC 看起来与传统计算机不同,因为它们经过了加固处理,以实现耐磨和抗震。PLC 有多种类型,其 I/O(输入/输出)的数量和类型、外壳和封装以及与其他 PLC 和 SCADA 系统交互的能力各不相同。PLC 的这些特性决定了它们在恶劣的工业环境中运行的能力
[嵌入式]
PLC<font color='red'>编程</font>-梯形图逻辑和梯形图
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved