为了让机器人实现蟑螂般的快速移动,吴一川和加州大学伯克利分校一位长年研究蟑螂的生物学家罗伯特福尔教授展开了合作:“教授发现,蟑螂移动的时候,通过腿部的动作,有时是腾空跳跃的,只不过因为这个腾空的高度相比我们人类太低了,我们很难发现。”
为了还原蟑螂的移动,课题组把用高速摄像机拍下来的蟑螂移动的视频研究了几十次,“我们需要找到蟑螂的重心,因为根据图像分析出来的重心只能做一个参考,所以还得将图像放大,亲自计算。”吴一川介绍,经过计算,蟑螂移动时候的重心连成线画出来的话,就仿佛一条波浪线,这也反映了蟑螂是如何“跳着走”的。
据悉,目前研制的一系列的“蟑螂机器人”长度约为1~3厘米,重量小于1/10克,其中1厘米的机器人的运动速度可达每秒20厘米,相当于20倍的自身长度,还具备一定的爬坡和携带负载的能力。
除了在运动速度上接近蟑螂,利用柔性材料制作的机器人还能在耐压层面上接近蟑螂的能力。先前的研究发现,蟑螂在承受自身重量900倍的压力后,仍能保持生命力,这相当于一个60公斤的人承受住了54吨的压力。
在实验中,研究人员将一个100克的砝码放在“蟑螂机器人”上,“蟑螂机器人”几乎被压扁了,但将砝码取走后,“蟑螂机器人”仍然能够高速运动,速度几乎没有受到影响。“后续的实验中,我亲自站到了‘蟑螂机器人’上面,我的体重差不多就是60公斤,我离开之后,再次蟑螂机器人的速度,发现其仍能保持一般的性能。某种程度上,‘蟑螂机器人’具备了类似真蟑螂的抗压能力。”
据介绍,包括“蟑螂机器人”在内的微型软体机器人未来应用前景非常广泛,有望在灾害救援、管道检测、侦察监听等隐蔽狭小空间作业场合大显身手。“比如在救灾的时候,一些人和搜救犬进不去的地方,‘蟑螂机器人’就可能发挥作用,如果‘蟑螂机器人’达成集群,就可能取得更高效的监测效果。”吴一川说。
不过,吴一川坦言,现在研究只是迈出了第一步。“目前此款机器人达不到完美,比如还是依靠外部供电,需要导线连接。负重等能力也还需要进一步增强,以便携带微型。未来我们会和能源等领域的专家合作,争取让包括‘蟑螂机器人’在内的软体机器人更多、更好地为人类服务。
上一篇:未来机器人产业会代替人工吗
下一篇:看机器人如何在医疗行业里妙手回春