RFID 手持机在交通运输、门禁、物流、考勤、货物管理、身份识别等方面有着十分广泛的应用。RFID 手持设备对电源的效率、使用寿命、可靠性、体积、成本等方面有较高的要求。因此,设计一个稳定性好、效率高、杂散小的电源对于RFID 手持机有着十分重要的意义。
1 RFID 手持机硬件结构
在基于嵌入式系统的RFID 手持机系统设计中,以微处理器LPC2142 为主控制器,根据系统的需求外扩了SRAM、Flash、SD 卡、键盘、LCD 显示、声响提示进行数据处理、数据存储、人机交互以及出错报警提示,通过USB 接口可以与主机进行数据通信,背光模块可以为LCD 和键盘提供背光,电压检测模块通过核心处理器的A/D 转换器进行电池电压的检测,从而间接检测出电池的剩余电量,RF 模块能够进行读写器与标签之间射频信号的收发,通过JTAG 接口可以进行程序的调试与下载。电源部分可以为系统中需要电源的各个模块提供电源,这是本文设计的重点内容。系统硬件结构框图如图1 所示。 2 需求电源的指标
经设计并计算,该系统需要两种电压的电源,一路是3. 3 V 的,为键盘、LCD 复位电路、所外扩的存储器、RF 模块供电; 另一路是5 V 的,为系统的声响提示电路以及键盘和LCD 的背光电路提供电源。为方便携带,系统采用电池供电,欲达到性能指标如下:
( 1) 电源转化效率≥80 %;
( 2) 输出电流要求: 3. 3 V 输出电流500 mA; 5 V输出电流300 mA;
( 3) 两路电源电压的波动均控制在± 5 %以内;
( 4) 可以通过USB 输入对电池进行充电。
3 各种电源芯片的特点及选型注意事项
3. 1 各种电源芯片
3. 2 选型注意事项
首先,必须要正确选择电源芯片类型。要明确输入电压和所需要的输出电压,进而确定是升压、降压还是升/降压。特别要注意的是,普通线性稳压器、LDO和Buck( 或Step-down) 型DC-DC 只能降压,不能升压,Boost( 或Step-up) 型DC-DC 只能升压不能降压。
强调这一点的原因是,一些芯片( LDO 或者降压型DC-DC) 的手册给出的输入电压范围和输出电压范围都很宽,很容易误导没有经验的设计者。手册中的输出电压范围,很多都是针对给出的输入电压范围的,对于特定的输入电压,在很多情况下,实际的输出是达不到给出的输出电压的。这一点十分关键,决定系统设计的成败,应引起高度重视。
其次,手持设备的电源设计中,要注意芯片的静态电流,这一点对系统的待机时间影响很大,好的电源芯片的静态电流在μA 级,较差的芯片在mA 级,相差上千倍,静态电流越小,电池的电能耗散就越少,寿命就越长。
再次,注意要从实际的负载来考察效率。电源效率与输出电流是密切相关的,当输出电流很小或很大时,效率都会变得较差,需要根据需要的电流来选择电源芯片,以达到效率最大化。
4 方案选择及芯片选型
4. 1 方案选择
方案1: 3. 3 V 输出采用LDO,5V 输出采用电荷泵。
方案2: 3. 3 V 输出采用Buck /Boost 型DC-DC,5V 输出采用升压型DC-DC。
由于锂离子电池的电压范围变化较宽,在2. 5V ~ 4. 2 V( 4. 2 V 是满充可以达到的电压) 之间都应该有正常的电源输出电压,如果采用3. 3 V 输出的LDO,由于要满足输入输出的最小压差的要求,当电池电压降到3. 4 V 左右时,电源可能达不到输出3. 3 V 电压了。采用电荷泵输出5 V,当输入输出电压比较接近时电荷泵的效率不会很高。采用第二种方案可以最大限度地提高电源转化效率,延长电池的使用时间。
综合考虑以上的比较,选择第二种方案。
4. 2 芯片选型
通过查询,决定采用TI 的两个芯片TPS63031 和TPS61240 分别作为3. 3 V 输出和5 V 输出的电压转换芯片,TPS63031 在输入电压在2. 4 ~ 5. 5 V 范围内,通过升压或者降压工作模式输出高达800 mA 的电流,在节能模式下,当输出电流在100 ~ 500 mA 之间变化时,效率均在80 % 以上。TPS61240 是可以工作在3. 5 MHz 的升压DC-DC,输出电流可以达到450mA,具有PFM/PWM 工作模式,当负载电流在200 mA左右时,可以在电池的电压范围内提供80 %以上的效率。
由于微处理器对电源纹波要求较高,所以在3. 3V 输出的后边增加了一个LDO,以滤除DC-DC 输出较大的纹波,提高输出电压的稳压精度。由于要满足压差和处理器可靠工作电压的要求,选输出电压比3. 3V 低的TPS78320,可以输出3. 2 V 电压,最大可以输出150 mA 的电流,这个电压满足微处理器LPC2142可靠工作电源电压范围和电流需求。
此外,该LDO 的静态电流仅为500 nA,这正符合电池供电的手持系统节能的要求。
5 调试
5. 1 调试步骤
按照原理图上的参数在印制电路板上焊接好元器件之后,仔细检查元器件的取值、焊接方向、元器件的极性是否焊接正确,用万用表仔细检测元器件的焊接是否存在虚焊,靠得比较近的元器件是否存在不应该存在的短路现象。
关键字:嵌入式系统 RFID手持机
引用地址:基于嵌入式系统的RFID手持机系统设计
1 RFID 手持机硬件结构
在基于嵌入式系统的RFID 手持机系统设计中,以微处理器LPC2142 为主控制器,根据系统的需求外扩了SRAM、Flash、SD 卡、键盘、LCD 显示、声响提示进行数据处理、数据存储、人机交互以及出错报警提示,通过USB 接口可以与主机进行数据通信,背光模块可以为LCD 和键盘提供背光,电压检测模块通过核心处理器的A/D 转换器进行电池电压的检测,从而间接检测出电池的剩余电量,RF 模块能够进行读写器与标签之间射频信号的收发,通过JTAG 接口可以进行程序的调试与下载。电源部分可以为系统中需要电源的各个模块提供电源,这是本文设计的重点内容。系统硬件结构框图如图1 所示。 2 需求电源的指标
经设计并计算,该系统需要两种电压的电源,一路是3. 3 V 的,为键盘、LCD 复位电路、所外扩的存储器、RF 模块供电; 另一路是5 V 的,为系统的声响提示电路以及键盘和LCD 的背光电路提供电源。为方便携带,系统采用电池供电,欲达到性能指标如下:
( 1) 电源转化效率≥80 %;
( 2) 输出电流要求: 3. 3 V 输出电流500 mA; 5 V输出电流300 mA;
( 3) 两路电源电压的波动均控制在± 5 %以内;
( 4) 可以通过USB 输入对电池进行充电。
3 各种电源芯片的特点及选型注意事项
3. 1 各种电源芯片
3. 2 选型注意事项
首先,必须要正确选择电源芯片类型。要明确输入电压和所需要的输出电压,进而确定是升压、降压还是升/降压。特别要注意的是,普通线性稳压器、LDO和Buck( 或Step-down) 型DC-DC 只能降压,不能升压,Boost( 或Step-up) 型DC-DC 只能升压不能降压。
强调这一点的原因是,一些芯片( LDO 或者降压型DC-DC) 的手册给出的输入电压范围和输出电压范围都很宽,很容易误导没有经验的设计者。手册中的输出电压范围,很多都是针对给出的输入电压范围的,对于特定的输入电压,在很多情况下,实际的输出是达不到给出的输出电压的。这一点十分关键,决定系统设计的成败,应引起高度重视。
其次,手持设备的电源设计中,要注意芯片的静态电流,这一点对系统的待机时间影响很大,好的电源芯片的静态电流在μA 级,较差的芯片在mA 级,相差上千倍,静态电流越小,电池的电能耗散就越少,寿命就越长。
再次,注意要从实际的负载来考察效率。电源效率与输出电流是密切相关的,当输出电流很小或很大时,效率都会变得较差,需要根据需要的电流来选择电源芯片,以达到效率最大化。
4 方案选择及芯片选型
4. 1 方案选择
方案1: 3. 3 V 输出采用LDO,5V 输出采用电荷泵。
方案2: 3. 3 V 输出采用Buck /Boost 型DC-DC,5V 输出采用升压型DC-DC。
由于锂离子电池的电压范围变化较宽,在2. 5V ~ 4. 2 V( 4. 2 V 是满充可以达到的电压) 之间都应该有正常的电源输出电压,如果采用3. 3 V 输出的LDO,由于要满足输入输出的最小压差的要求,当电池电压降到3. 4 V 左右时,电源可能达不到输出3. 3 V 电压了。采用电荷泵输出5 V,当输入输出电压比较接近时电荷泵的效率不会很高。采用第二种方案可以最大限度地提高电源转化效率,延长电池的使用时间。
综合考虑以上的比较,选择第二种方案。
4. 2 芯片选型
通过查询,决定采用TI 的两个芯片TPS63031 和TPS61240 分别作为3. 3 V 输出和5 V 输出的电压转换芯片,TPS63031 在输入电压在2. 4 ~ 5. 5 V 范围内,通过升压或者降压工作模式输出高达800 mA 的电流,在节能模式下,当输出电流在100 ~ 500 mA 之间变化时,效率均在80 % 以上。TPS61240 是可以工作在3. 5 MHz 的升压DC-DC,输出电流可以达到450mA,具有PFM/PWM 工作模式,当负载电流在200 mA左右时,可以在电池的电压范围内提供80 %以上的效率。
由于微处理器对电源纹波要求较高,所以在3. 3V 输出的后边增加了一个LDO,以滤除DC-DC 输出较大的纹波,提高输出电压的稳压精度。由于要满足压差和处理器可靠工作电压的要求,选输出电压比3. 3V 低的TPS78320,可以输出3. 2 V 电压,最大可以输出150 mA 的电流,这个电压满足微处理器LPC2142可靠工作电源电压范围和电流需求。
此外,该LDO 的静态电流仅为500 nA,这正符合电池供电的手持系统节能的要求。
5 调试
5. 1 调试步骤
按照原理图上的参数在印制电路板上焊接好元器件之后,仔细检查元器件的取值、焊接方向、元器件的极性是否焊接正确,用万用表仔细检测元器件的焊接是否存在虚焊,靠得比较近的元器件是否存在不应该存在的短路现象。
上一篇:基于RFID的校园安全智能管理系统方案
下一篇:超高频电子标签(RFID)射频模拟前端的设计与仿真
推荐阅读最新更新时间:2024-05-07 16:31
LCD驱动器SD0432与嵌入式系统的接口设计
摘要:集成LCD显示驱动器SD0432是深圳兴威帆电子有限公司生产的低工作电压串行接口芯片,它内部具有看门狗(WDT)及语音输出电路。文中介绍了SD0432的工作特性及工作原理,给出了SD0432与8051嵌入式微处理器的接口电路及部分程序代码。
关键词:LCD显示驱动器 SD0432 嵌入式系统芯片8051 看门狗(WDT)
1 SD0432的主要特性
现今,随着LCD价格的下降,LCD的使用已经越来越普遍了,如在电脑显示器方面,大有LCD显示器取代CRT显示器的趋势。同时由于LCD显示器具有直观、小巧轻薄、耐用等特性,因而得到了广泛的使用。
SD0432是具有128段(32%26;#215;4位)和映射存储器
[应用]
基于嵌入式系统的GPRS系统的设计
嵌入式系统就是一个具有特定功能或用途的计算机软硬件结合体,或指装入另一个设备并且控制该设备的专用计算机系统。嵌入式系统的最大特点是其具有目的性和针对性,即每一套嵌入式系统的开发都有其特殊的应用场合与特定功能。嵌入式系统包含硬件和软件两部分:硬件架构以嵌入式处理器为中心,配置存储器、I/O设备、通信模块等;软件部分以软件开发平台为核心,向上提供应用编程接口API,向下屏蔽具体硬件特性的板级支持包BSP。嵌入式系统中,软件和硬件紧密配合,协调工作,共同完成系统预定的功能。 GPRS是General Packet Radio Service的简称,即通用无线分组业务。它是基于现在运行的GSM基础上发展的数据业务,类似于固定交换技
[工业控制]
基于ARM的嵌入式系统开发的方案
1 背景介绍 在日益信息化的社会中,各种各样的嵌入式系统已经全面渗透到日常生活的每一个角落。嵌入式系统的功能越来越复杂,这就使得一个嵌入式系统产品从市场需求立项到方案选择、样机研制、定型量产所需要的开发费用越来越多,所需开发时间越来越长。因此,高效的嵌入式系统设计方法就显得尤为重要。 1.1 传统的嵌入式系统设计方法 嵌入式系统开发的关键就是对核心部分进行功能验证。传统的验证方法是建模模拟和制作目标板评估。 通过建模来进行功能验证存在不足。首先就是耗时和准确性互相矛盾。建立高层次的模型需要的时间短,但是模拟不够准确。相反,低层次的模型可以达到满意的评估效果,但是建模耗时长。其次,建模模拟是静态的过程,不能很
[单片机]
FPGA平台架构用于复杂嵌入式系统
设计嵌入系统的主要挑战来自于需要同时优化众多设计因素。这些需要优化的设计因素包括单位成本、NRE(不可回收工程)成本、功率、尺寸、性能、灵活性、原型制造时间、产品上市时间、产品在市场生存时间、可维护性、可重配置能力、工程资源、开发和设计周期、工具、硬件/软件划分,以及其他许多因素。 Virtex-II ProTM平台FPGA产品基于高性能的Virtex-IITM结构,为嵌入式系统设计提供了一个极灵活的解决方案。利用Virtex-II ProTM器件,嵌入式系统设计人员可以在单片器件内集成范围广泛的硬和软IP核心,其中的硬件和固件具有可升级能力,从而可延长产品的在市场生存时间。 Virtex-II 结构的可编程能力降低了系统开发
[嵌入式]
浅析单片机与嵌入式系统异同
什么是单片机呢?一般我们将单片微型计算机简称为单片机,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。是一种典型的嵌入式微控制器。那么,什么是嵌入式系统?嵌入式系统是指以应用为中心,以计算机技术为基础,软、硬件可裁剪,适应应用系统对功能、体积、成本、可靠性、功耗严格要求的专用计算机系统。对于单片机与嵌入式系统这两者又有什么区别与联系呢(嵌入式操作系统功能)?下面就让我们不一起来探讨学习一下吧。 单片机与嵌入式系统组成结构对比 (1)单片机基本结构 单片机由运算器、控制器、存储器、输入输出设备构成。 (2)嵌入式系统成部
[单片机]
一种基于嵌入式系统和Internet的FPGA动态配置方案
摘要:一种基于嵌入式系统和Inlternet的FPGA动态配置方案。详细介绍了该方案的设计思想,并给出了设计实例。与传统的FPGA配置方案相比,该方案具有灵活、高效等突出优势。该方案的可行性和实用性已在实际系统中得到验证。
关键词:嵌入式系统 Internet FPGA TCP/IP TFTP
在现今的数字系统设计中,以“嵌入式微控制器+FPGA”为核心的体系结构因其强大的处理能力和灵活的工作方式而被广泛采用。嵌入式微控制器的优势在于将微处理器内核与丰富多样的外围接口设备紧密结合,在提供强大的运算、控制功能的同时,降低了系统成本和功耗,因而适合作为数字系统的控制核心;FPGA的优势在于超高速、丰富的逻辑资源以及用户可灵活配置
[半导体设计/制造]
嵌入式系统与ZigBee无线技术相结合的通用网络测控
随着物联网概念的提出及相关技术的发展,网络化测量控制已成为测控系统发展的必然趋势。然而,当前国内外工业控制领域普遍使用且技术相当成熟的PLC(Programable LogIC Controller)基本都不支持网络,也不能简单升级具有网络功能,且模式较为单一。因而,设计与实现了一种网络化通用测控系统平台,以实现网络化测控需求且具有一般平台的通用性能。本文主要介绍了ARM嵌入式系统与ZigBee无线技术相结合的通用网络测控平台的硬件设计。 1 系统硬件总体设计 基于ARM的通用网络测控系统硬件架构如图1所示,本系统在测控端采用基于ARM的CPU,通过网络接口与Internet相连,外围扩展有数字量输入/输出模块、模
[单片机]
基于ARM-μCLinux嵌入式系统启动引导的实现
32位ARM嵌入式处理器具有高性能、低轼耗的特性,已被广泛应用于消费电子产品、无线通信和网络通信等领域。ΜCLinux是专门为无MMU处理器设计的嵌入式操作系统,支持ARM、Motorola等微处理器。目前国内外采用ARM-μCLinux作为嵌入式系统非常普遍。而嵌入式系统的启动引导技术是嵌入式系统开发的一个难点。系统启动引导的成功与否决定了应用程序的运行环境是否能正确构建,即系统启动成功是应用正确运行的前提。 常用的嵌入式系统启动方法是先通过JTAG将嵌入式操作系统内核与进Flash,再由其带的引导程序bootloader完成嵌放式系统的启动引导工作。这种方法要借助昂贵的JTAG设备完成操作系统内核 的烧写工
[应用]