CMX469A和MSM7512B分别为CML公司和OKI公司生产的单片调制解调器芯片,本文分别采用这两种芯片,设计实现了应用于无线安防监控等领域的数字调制解调器,并对两种方案做了对比分析。
图1 CMX469A与单片机接口连接关系
图2 MSM7512B与单片机接口连接关系
基于CMX469A的数字MODEM的设计与实现
硬件设计
CMX469A和单片机的外部接口电路比较简单,可通过单片机AT89C2051方便设置CMX469A的各功能引脚。CMX469A与单片机AT89C2051的接口关系如图1所示。
在工作过程中,首先通过单片机的P1口设置CMX469A的传输速率,引脚设置及其所对应的传输速率如表1所示。设定好其工作状态后,开启收/发使能,从而启动CMX469A。
软件设计
单片机AT89C2051分别通过外中断0和外中断1控制CMX469A的数据发送和接收。系统中的其他数据设备则通过RS-232或RS-485接口与单片机连接。
在数据接收模式下,单片机首先等待外中断INT1的到来,然后通过P1端口接收CMX469A的解调数据,并将接收的数据通过标准串口发送至RS-232或RS-485接口,从而最终将数据发送至其他设备。
在数据发送模式下,单片机则首先通过串口接收来自其他外部设备的数据,存于数据缓冲区;然后启动CMX469A的发送使能TX ENABLE,并等待外中断INT0的到来;在每一次中断产生后,单片机通过P1端口发送1bit数据至CMX469A的TX DATA引脚,调制后的FFSK信号则经TX SIGNAL引脚发送至数传电台进行射频调制,或直接经电缆传输。
系统实现过程中,可以采取在数据包中附加数据同步头的形式,首先收发同步头,从而保持收发同步并保证数据传输的正确性。
需要注意的是,在对CMX469A进行接收使能操作并收到FSK信号后,其载波检测电路至少需要8bit的数据周期才能达到稳定状态,并在其载波检测CARRIER DETECT引脚端有稳定的高电平输出。因此,CMX469A应用在数据突发传输系统中时,如果仅通过其载波检测引脚的状态判断是否有数据接收,将造成数据丢失。
基于MSM7512B的数字MODEM的设计与实现
硬件设计
相比较CMX469A而言,由于MSM7512B为固定传输速率的MODEM芯片,其与单片机的接口更简单。MSM7512B与单片机AT89C2051的接口电路如图2所示。
实际应用中,通过单片机AT89C2051的P1.7引脚设置MSM7512B的模拟发送信号的幅度:数字“1”对应-10dBm的幅度典型值,数字“0”对应-4dBm的幅度典型值。通过设置MSM7512B的MOD1、MOD2引脚的状态,可定义其工作模式,具体定义如表2所示。
软件设计
MSM7512B数字MODEM的软件设计比较简单。由于MSM7512B为半双工MODEM芯片,因此在系统软件设计中,采用查询方式收发数据。为了进行收发同步并保证数据传输的正确性,也采用在数据包前附加数据同步头的方式。
结语
通过以上的设计与论述可以看出,基于MSM7512B的数传MODEM设计更加简单,更加易于实现。但由于MSM7512B芯片的传输速率和双工方式的限制,其只能应用于传输速率为1200bps的半双工数传领域。而基于CMX469A的数传MODEM控制相对复杂一些,但其最大传输速率可达4800bps,且可全双工工作。
总之,基于CMX469A和MSM7512B的无线数传MODEM均具有设计简单、易于实现、功能完善的优点,可广泛应用于安防监控、数据采集等无线数传领域。
参考文献
1 CMX469A. 1200/2400/4800 Baud FFSK/MSK Modem. CML-COM.INC. 2001
2 OKI公司. OKI集成电路手册. 人民邮电出版社,2000
关键字:单片机 接口 速率
引用地址:
两种无线数字调制解调器的设计对比
推荐阅读最新更新时间:2024-05-07 15:53
M30102F3FP型号M16C系列单片机参数
厂商:Renesas 描述: IC M16C MCU FLASH 24K 48LQFP 包装: Tray 封装: 48-LQFP 无铅情况/ROHS: 有铅 类别: M16C系列单片机 参数 数值 系列 M16C M16C/10 核心处理器 M16C/60 芯体尺寸 16-Bit 速度 16MHz RAM容量 1K x 8 程序存储器类型 FLASH 程序存储器容量 24KB (24K x 8) 输入/输出数 34 振荡器型
[单片机]
A/D转换器芯片及接口电路
A/D转换器芯片及接口电路
1.8位A/D转换器芯片ADC0809 ADC0809是CMOS单片型逐次逼近式A/D转换器,ADC0809的主要特性: ● 它是具有8路模拟量输入、8位数字量输出功能的A/D转换器。 ● 转换时间为100μs。 ● 模拟输入电压范围为0V~+5V,不需零点和满刻度校准。 ● 低功耗,约15mW。
(1)ADC0809结构框图及引脚说明
图4.24 ADC0809的结构框图和引脚
通道选择开关 通道地址锁存和译码 逐次逼近A/D转换器 8位锁存器和三态门
(2)ADC0809的工作过程 对ADC0809的控制过程是: ① 首先确定ADDA、ADDB、ADDC三位
[模拟电子]
8051单片机实战分析(以STC89C52RC为例) | 06 - 动态数码管驱动
1 动态扫描 那什么是动态扫描呢? 举个例子:有 2 个数码管,我们要显示“12”这个数字,可以先让高位的位选三极管导通,然后控制段选让其显示“1”,延时一定时间后再让低位的位选三极管导通,然后控制段选让其显示“2”。把这个流程以一定的速度循环运行就可以让数码管显示出“12”,由于交替速度非常快,人眼识别到的就是“12”这两位数字同时亮了。 在多个数码管显示数字的时候,我们可以轮流点亮数码管(一个时刻内只有一个数码管是亮的),利用人眼的视觉暂留现象(也叫余辉效应),就可以做到看起来是所有数码管都同时亮了,这就是动态显示,也叫做动态扫描。 那么一个数码管需要点亮多长时间呢?也就是说要多长时间完成一次全部数码管的扫描呢(很
[单片机]
LCD和控制器接口电路
LCD和控制器接口电路图:在接口电路设计中,由于LM320160CCW液晶显示模块为5 V供电,而单片机为3.3 V供电,所以不能简单的彼此连接在一起,需要做电平处理。本次设计中选用741S245作为总线驱动器,并在单片机引脚加入5 V上拉电阻,这样即可保证信号的驱动能力,接口电路原理图如图3所示,其中P3和P7为单片机的I/O端口,RV1为可调电阻,用于调节液晶模块背光对比度。
[电源管理]
MSP430系列单片机复位电路系统设计分析
0 引言 TI公司的混合信号处理器MSP430系列单片机以其处理能力强大、外围器件集成度高、功率消耗低、产品系列全面、全系列工业级等特点,作为目前MCU主流市场的产品之一,在电子应用领域中得到广泛应用,被越来越多的电子设计师所青睐。由于复位电路设计问题而导致的系统出现上电后不工作或状态不正确是很多MSP430单片机电路设计者们在设计、调试和应用中曾遇到过的问题,尽管这种情况发生的几率很低,但对于可靠性要求较高的应用场合,这个现象仍需引起电子设计人员的足够重视。 为此,本文对MSP430全系列单片机的复位系统和复位机制进行了详细深入的分析,并针对性地提出了具体的外围复位电路设计方案和有关电子元器件的详细介绍,以供同行
[单片机]
STC89C52RC单片机实现串口打印功能
stc的89c52rc型号开发板,晶振是12m。是因为买的最小系统就是这个频率。使用波特率位9600,将TL、TH都设置成0xfd后不管是英文还是中文的都是乱码。 12M的晶振波特率只能是2400,9600的情况下会有7.8%的误差,所以会产生乱码,而2400波特率的情况下误差是0.16%,这样就不会产生乱码了,TH1和TL1都设为F3 为什么51单片机的晶振一般使用11.0592? 用11.0592晶振的原因是51单片机的定时器导致的。用51单片机的定时器做波特率发生器时,如果用11.0592Mhz的晶振,根据公式算下来需要定时器设置的值都是整数;如果用12Mhz晶振,则波特率都是有偏差的,比如9600,用定时器取0XF
[单片机]
单片机74LS138应用
硬件连接: 程序: #include reg52.h #define uint unsigned int #define uchar unsigned char void Delay(uint x) { uchar i; while(x--) { for(i=0;i 120;i++); } } void main() { P2 = 0x00; while(1) { P2 = (P2+1)%8; Delay(50); } }
[单片机]
51单片机端口
p0:8位双向I/O口,作输出时能驱动8个TTL,漏极开路型端口 p1:8位双向I/O口,作输出时可驱动4个TTL,带有内部上拉电阻 p2:8位双向I/O口,作输出时可驱动4个TTL,带有内部上拉电阻 p3:8位双向I/O口,作输出时刻驱动4个TTL,带有内部上拉电阻 p0-p3:端口置1时,作输入用。 上拉电阻:通常用4.7-10k的电阻接Vcc电源,把电平拉高 下拉电阻:通常用4.7-10k的电阻接GND线上,把电平拉低
[单片机]