一种基于LVDS的高速串行数据传输系统设计

发布者:hfy13567003617最新更新时间:2007-02-26 来源: 电子设计应用关键字:雷达  信号  处理  控制 手机看文章 扫描二维码
随时随地手机看文章
引言

在某型雷达信号处理系统中,要求由上位机(普通PC)实时监控雷达系统状态并采集信号处理机的关键变量,这就要求在处理机与上位机之间建立实时可靠的连接。同时,上位机也能对信号处理板进行控制,完成诸如处理机复位、DSP程序动态加载等功能。实验中,处理机和上位机之间的数据传输距离不小于8m。在这种前提下,计算机上现有的串口、并口显然不能满足要求,而USB2.0接口工作在高速模式时传输距离只有3m,其它诸如以太网传输的实时性难于满足要求,光纤通道传输的构建成本又太高。基于此,本文提出了一种采用LVDS高速串行总线技术的传输方案。

数据传输系统方案

由于系统要求传输距离大于8m,需采用平衡电缆。对于两端LVDS接口,可以采用ASIC和FPGA两种方式实现。由于Xilinx公司生产的Virtex-II系列FPGA直接支持LVDS电平标准,本系统采用XC2V250实现,这不仅省去了专用LVDS电平转换芯片,节省了成本,而且可以将系统中其它控制逻辑集成在单个FPGA芯片内,从而降低了PCB设计的难度,提高了系统的集成度和可靠性。另外,收发接口逻辑采用FPGA,可以在使用过程中根据需要重新配置传输方向,以动态地改变收发通道的数目,大大增强了系统的可重构能力。

整个数据传输系统框图如图1所示。由于数据传输是双向的,信号处理板和PCI板都有并/串转换发送模块和串/并转换接收模块(均在FPGA内实现),两块板卡通过平衡电缆连接。此外,在信号处理板上,DSP处理机通过外部总线向FPGA发送缓存区内写入数据,FPGA通过DSP的主机口完成与DSP存储空间的数据交换。在PCI板上,FPGA通过PCI控制器和主机进行数据交换。系统工作原理可表述如下:DSP处理机将处理结果通过外部总线输出到FPGA缓冲存储器内,在FPGA内完成数据的并/串转换,并通过LVDS串行接口发送出去。数据通过平衡电缆传输至上位机接收卡。在上位机接收卡内,数据经串/并转换后,送至PCI接口控制电路。上位机输出数据到DSP处理板的过程则相反。由于系统要求数据传输上行数据率小于下行数据率,设计中上行数据传输通道数为1,下行数据通道数是4。在传输距离大于8m的情况下,实际单通道数据传输速率达到264Mbps。

LVDS并/串转换实现

由于FPGA是通过DSP处理机的外部总线获得数据的,其数据形式是并行的,所以发送前应将其转换为串行比特流。FPGA内实现并/串转换和串行发送功能的模块HSTX的原理框图如图2所示。

由图2可以看出,该模块有3个输入信号。分别为时钟输入CLK、帧同步信号TFR和并行数据TCH1[7:0]。其中,CLK频率为33MHz,经过数字时钟管理器(DCM)锁相倍频后得到串行模块内部时钟CLK1X(33MHz)、CLK4XR(33×4=132MHz)和CLK4XF(33×4=132MHz),其中CLK4XR与CLK4XF反相,与CLK1X同相。输出为三组差分信号,分别为串行数据TCH1[P:N]、串行时钟TCLK[P:N]和串行帧同步信号TFR[P:N]。输入时钟CLK信号上升沿有效,时钟上升沿时,若帧同步信号为高电平,则锁存输入数据TCH1[7:O],延时一个时钟周期开始发送。输出的发送时钟TCLK[P:N]为132MHz,双沿有效。输出串行数据采用小终端模式,数据低位LSB在前,帧同步信号TFR[P:N]输出比特序列11110000,用于供接收端同步。

如图2所示,串行发送模块主要由LOAD_GEN、OUT_DATA、OUT_FR、OUT_CLK4个模块组成。LOAD_GEN模块用来产生并/串转换时加载数据的选通脉冲。OUT_DATA模块采用移位寄存器实现数据并/串转换。而OUT_FR和OUT_CLK模块分别用来产生串行帧同步信号和串行时钟信号。这些模块均使用硬件描述语言VHDL设计完成。

LVDS传输电路设计

由于LVDS总线的传输速率达到264Mbps,对PCB布线等方面要求特别高。本文利用高速电路仿真分析工具——Mentor Graphics公司的HyperLynx,对LVDS传输电路进行了仿真设计,包含传输线阻抗设计、端接匹配、差分信号布线。同时考虑了接插件和传输电缆的选择对数据传输的影响。

LVDS信号的电压摆幅只有350mV,为电流驱动的差分信号工作方式,最长的传输距离可以达到10m以上。为了确保信号在传输线中传播时,不受反射信号的影响,LVDS信号要求传输线阻抗受控,差分阻抗为100。本系统应用中,利用高速电路仿真分析工具,通过合理的设置层叠厚度和介质参数,调整走线的线宽和线间距,计算出单线和差分阻抗结果,来达到阻抗控制的目的。

LVDS信号的拓扑可以是点到点单向,点到点双向或总线型(multi—drop)。无论哪种应用,都需要在接收端进行端接匹配。匹配阻抗值等于差分阻抗,典型值为100。匹配电阻在这里主要起到吸收负载反射信号的作用,因此,要求距离接收端尽量靠近。在本系统中,利用FPGA片内的数控阻抗(Digitally Controlled Impedance),直接配置FPGA内部端接阻抗值,在FPGA内部实现端接匹配。这样做不仅可以方便修改端接阻抗值大小,使端接电阻很好地匹配,而且端接电阻与接收端非常靠近。

差分信号的布线是整个传输电路设计的难点。一般来说,按照阻抗设计规则进行差分信号布线,就可以确保LVDS信号质量。在实际布线当中,LVDS差分信号布线应遵循以下原则:

1、差分对应该尽可能地短、走直线、减少布线中的过孔数,差分对内的信号线间距必须保持一致,避免差分对布线太长,出现太多的拐弯。

2、差分对与差分对之间应该保证10倍以上的差分对间距,减少线间串扰。必要时,在差分对之间放置隔离用的接地过孔。

3、LVDS差分信号不可以跨平面分割。尽管两根差分信号互为回流路径,跨分割不会割断信号的回流,但因为缺少参考平面而导致阻抗的不连续。

4、尽量避免使用层间差分信号。在PCB板的实际加工过程中,由于层叠之间的层压对准精度大大低于同层蚀刻精度,以及层压过程中的介质流失,层间差分信号不能保证差分线之间间距等于介质厚度,因此会造成层间差分对的差分阻抗变化。因此建议尽量使用同层内的差分。

5.在设计阻抗时,尽量设计成紧耦合方式,即差分对线间距小于或等于线宽。

此外,在LVDS传输电路设计当中应当选用适合差分信号的高速接插件,一方面,接插件的特征参数能够与LVDS信号阻抗匹配,通过接插件的信号畸变很小;另一方面,能够提供足够的布线空间,设计PCB走线宽度和间距。例如AMP公司的Z—PACK HS3系列接插件,在电气性能方面,比较适合高速LVDS信号互连。

本系统采用平衡电缆实现长距离传输,然而,由于LVDS特殊的阻抗匹配要求和极低的时序偏置要求,传统的电缆不能用于LVDS数据传输。试验证实双绞线电缆性能最优。短距离(大约0.5m)应用时CAT3平衡双绞线电缆效果最佳。而高于0.5m以及数据率大于500MHz时,CAT5平衡电缆效果最好。

结语

本文实现的高速数据传输系统,已成功应用于某雷达信号处理机和上位机之间的数据传输,传输距离大于8m,单个通道数据传输速率达到264Mbps,5个数据通道传输速率总共达1.32GbpS,传输过程稳定。

关键字:雷达  信号  处理  控制 引用地址:一种基于LVDS的高速串行数据传输系统设计

上一篇:基于DSP的低功耗接收机单边带解调方法
下一篇:短信收发模块TC35i的外围电路设计

推荐阅读最新更新时间:2024-05-07 15:54

基于DSP与FPGA的运动控制器设计
  运动控制技术是数控机床的关键技术,其技术水平的高低将直接影响一个国家装备制造业的发展水平。目前,多轴伺服控制器越来越多地运用在运动控制系统中,具有较高的集成度和灵活性,可实时完成运动控制过程中复杂的逻辑处理和控制算法,能实现多轴高速高精度的伺服控制。本文选用DSP与FPGA作为运动控制器的核心部件,设计了通用型运动控制器。其中DSP用于运动轨迹规划、速度控制及位置控制等功能;FPGA完成运动控制器的精插补功能,用于精确计算步进电机或伺服驱动元件的控制脉冲,同时接收并处理脉冲型位置反馈信号。本文对该运动控制器的总体结构、硬件设计和软件设计进行了描述。    1 系统总体设计   运动控制器的总体性能指标为:作为一个单独的运动
[嵌入式]
美科学家研制意识控制手机 大脑暗示即拨号
  加利福尼亚州的研究人员已经研制出用思想拨号的手机 科学家表示,只要稍作练习,由思想控制的手机的准确率可以达到100%。   对我们这个寸时寸金的快节奏社会来说,拨电话号码似乎也是在浪费时间。对此美国研究人员已经找到解决办法,他们研制了用思想拨号的手机,以后不用动手指,我们就能打电话。   使用者佩戴的一个特制头饰带与蓝牙设备相连,能像诺基亚N73手机发送无线信号。这项技术通过对大脑的暗示做出反应产生作用,专家认为任何人经过练习,都能掌握操作方法。他们希望通过这项技术,能为残疾人和行动不便的老年人研制出更安全且不用双手的手机,或者让处在高压工作环境下的工作人员解放出双手。   加州大学圣地亚哥分校斯旺兹电
[医疗电子]
新一代智能型软起动控制固件
1 概述 新一代智能型软起动控制固件是采用单片机控制的新型控制模块,其核心部分采用德国整流器厂的专用模块,并含有整流电路、阻容保护电路以及V/F转换电路。该器件不需脉冲变压器及同步变压器。其晶闸管门极控制是将交流电间周分成312个等间距的全数字控制来进行的,因此具有密封性好、可靠性高、抗干扰能力强、反应速度快等特点,可直接驱动50~4500A的晶闸管。 该固件直接与三相反并联晶闸管和标准信号型电流传感器进行连接即可构成低成本、高性能、免调试软起动器,同时这样软件起动器还具有自动识别处理相序、自动设定起动限流值、额定电流值以及起动延时时间和缺相、过流保护等功能。 2 智能型软起动控制固件 智能型软起动控制固件的引脚示
[应用]
爱特公司发布SmartFusion FPGA马达控制参考设计
爱特公司(Actel Corporation)宣布提供面向马达控制应用的SmartFusion™智能混合信号FPGA参考设计。这些靠单一SmartFusion器件中实现的参考设计诠释了使用多种反馈方法的磁场定向控制(FOC),用于永磁同步马达(permanent magnet synchronous motors, PMSM)。SmartFusion器件集成了一个FPGA、一个硬核ARM® Cortex™-M3微控制器和可编程模拟模块,具有适合马达控制应用的独特性能,可让设计人员优化硬件/软件划分,实现最佳的马达效率和性能。 参考设计展示了单一A2F500器件使用复杂的FOC算法和充足的FPGA资源及附加
[嵌入式]
压电传感器的信号调节
本文介绍信号调节的一些原理。我们利用压电传感器来阐述这些原理,因为其调节要求综合使用许多传统工具,并且此类传感器具有一些其他类型传感器所没有的挑战。 压电传感器 用于感应和激励的压电传感器应用延伸到了许多领域。本文主要介绍对一些物理强度的感应,即加速度、振动、振荡和压力,从传感器及其要求信号调节的角度来看其可以被认为是类似的。就加速度而言,传感器灵敏度通常被表示为一个与外力即加速度(大多数时候称作重力加速度g)成比例关系的电荷。然而,从严格物理意义上来讲,传感器输出一个实际由其变形/偏斜情况决定的电荷。 例如,图1显示了安装于顶部位置的一个传感器,与此同时底部正受到一个外力的拉拽,即Fext.在使用加速计的情况下,固定端(顶部
[嵌入式]
柴油发电机组转速控制半物理仿真的分析
   1 引言   电子调速器是柴油机的关键部件之一,当实际柴油机及其负载性能发生变化且与调速器设计参数不匹配时,柴油发电机组就无法正常工作,这时需要修改调速器的控制参数。另外,电子调速器在出厂前和维修后都需要进行性能试验,以设定合适的控制参数满足其调节性能。在柴油机上直接进行电子调速器的参数整定、性能测试、维修后性能恢复既不安全、又不经济。进行半物理仿真是调速器进行实际配机试验之前不可缺少的环节,其工程思路是建立柴油机发电机组全工作范围动态仿真模型,通过输入输出接口电路与电子调速器相连构成一闭环控制系统,从而完成电子调速器的性能测试的相关试验。   建立柴油发电机组的仿真模型是Simulink的强项。由于半物理仿真系统
[工业控制]
柴油发电机组转速<font color='red'>控制</font>半物理仿真的分析
基于AT89S52的温湿度检测与智能化控制
  引言   温度、湿度是工农业生产的主要环境参数.对其进行适时准确的测量具有重要意义。利用单片机对温、湿度控制。具有控温、湿精度高、功能强、体积小、价格低,简单灵活等优点,很好的满足了工艺要求。本文介绍了利用AT89S52单片机进行温度和湿度的检测及其控制的智能化方法。   1 系统基本方案   本系统采用AT89S52单片机作为控制核心.对采集到的湿度模拟电压信号通过ADC0809进行分析处理.实现A/D转换.以便数码管显示其湿度值。本设计可以手动设置温度/湿度的上、下限值,如只要有一样与设定的值不符合时,即温度/湿度过高或过低,则该系统会发出语音报警,同时继电器立即切断电源.实现系统的保护。   2 硬件系统的组成
[单片机]
基于AT89S52的温湿度检测与智能化<font color='red'>控制</font>
iCatch和Prophesee合作开发AI视觉处理
据外媒报道,图像信号处理(ISP)技术和摄像头SOC公司iCatch Technology(iCatch)与先进神经形态视觉系统开发商Prophesee就基于事件的Metavision传感项目达成合作。 该项目将iCatch的V57 AI视觉处理器与新的索尼半导体解决方案(Sony Semiconductor Solutions,SSS)堆叠的基于事件的视觉传感器(Event-based Vision Sensor)IMX636集成在一起,实现SSS和Prophesee间的合作。 图片来源:iCatch iCatch为所有算法合作伙伴和ODM客户构建了OpenMVCam开发平台,可在监控、智能医疗、车内监控系统
[汽车电子]
iCatch和Prophesee合作开发AI视觉<font color='red'>处理</font>器
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved