1 数字前端
该低功耗数字接收机主要是针对语音信号的,要处理的信号都是窄带的。对数字前端中的混频器送出的模拟窄带中频信号进行采样,产生数字窄带中频信号。对该信号进行解调之前,先将频谱搬至零中频处,再进行滤波,降采样率等处理,如图1所示。
图1中A/D表示模数转换器,LPF表示低通滤波器,fs表示采样率,fo表示最靠近零频处镜像的中频。其中LPF实现如图2所示的功能。设滤出的复数信号采样率降为f's=fs/M。
图2中,细线表示上边带(USB),粗线表示下边带(LSB)。
说明一点,在实际中,上下边带的位置关系要根据模拟信号的中频及采样率fs才能确定,这里为了方便解释,就认为LSB在左,USB在右。
2 解调方案一
以解调上边带为例,如图3所示,设计一个数字带通滤波器,其频响关于中心频率fo'对称,别为f3,f4,截止频率处的衰减至少为-20 dB。
该带通滤波器的设计步骤如下:
(1)先设计一个低通滤波器,通带带宽为Δf1=f2-f1,过渡带带宽为Δf2=f1-f3。估算滤波器阶数:N=
(2)将上述的低通滤波器进行频谱搬移即可实现该带通滤波器(BPF),如图5所示。因此滤波器系数:
(3)如果利用FIRS指令实现边带滤波器,那么边带滤波的执行时间会降为原来的一半。但这时要求滤波器的系数是对称的。前面提到的低通滤波器系数是对称的。
为使带通滤波器的系数对称,我们将带通滤波器的系数附加一个相位△φ(n)。即:
的实部和虚部均为正。所以,带通滤波器的系数有这样的特点:实部偶对称,虚部奇对称。
3 解调方案二
还是以解调上边带为例,先搬移待解调信号的频谱,再做低通滤波,最后又将信号的频谱搬移回来,如图7所示。这种方案滤波器的设计思路简单,但要对信号进行两次频谱搬移。
LPF与方案一中所设计的低通滤波器相同。如图8所示,信号被搬至零中频处。
4两种方案的比较
方案一中,带通滤波器在一个时钟周期内进行如下的计算:
其中"*"表示卷积运算,下同。这表示要做4N次乘加运算,考虑到对称性只需要2N次乘加运算。
如果信号不是独立边带的,上边带信号解调所用的带通滤波器的系数与下边带信号解调所用的带通滤波器的系数是共轭关系,即hUSB(n)=hLSB*(n),则另外一个边带的滤波计算为:
其结果与前面的成共轭关系,因此,只要得到其中一个边带的实数部分即可得到解调结果。这样只需要N次乘加运算。
如果是独立边带的,上下边带的共轭关系不存在,则解调其中一个边带需要2N次乘加运算,上下边带解调共需要4N次乘加运算。
方案二中,低通滤波器在一个时钟周期内进行如下的计算:
这表示要做2N次乘加运算,考虑到对称性只需要N次乘加运算。
如果信号不是独立边带的,那么同方案一,只需要N/2次乘加运算。如果信号是独立边带的那就上下边带解调共需要2N次乘加运算。
另外两次经过NCO的运算在一个时钟周期内共需要8次乘加运算。
综合来说,就运算开销方面而言方案二要优于方案一。
关键字:混频 频谱 滤波 采样
引用地址:
基于DSP的低功耗接收机单边带解调方法
推荐阅读最新更新时间:2024-05-07 15:54
STM32的ADC采样频率及相应时间的确定
STM32 ADC 介绍 STM32 ADC 是一个12 位精度、 一种逐次逼近型模拟数字转换器。它有多达18个通道,可测量16个外部和2个内部信号源。各通道的A/D转换可以单次、连续、扫描或间断模式执行。 ADC的结果可以左对齐或右对齐方式存储在16位数据寄存器中。 ADC的输入时钟不得超过14MHz,它是由PCLK2经分频产生。转换时最快为1us,当ADC的输入时钟超过14MHz 时其会损失一些精度。当然如果可以达到我们的精度,输入时钟高点也没事。 在网上看到一回答ADC不超过14MHz 的答案:资料上的都是推荐,事实上很多芯片的设计都是有超额余量的,很多人都会超额的利用这些资源,并且很好的工作。
[单片机]
一种基于PE3236 L波段频率合成器设计实现
频率合成技术是产生频率源的一种现代化手段,他已广泛应用于通信、导航、电子侦察、干扰与反干扰、遥控遥测及现代化仪器仪表中。无线通信技术的快速发展,使得频率合成技术在通信中的作用日益显著。 以往的频率合成器都是用分立元件和小规模集成电路组装起来的,技术复杂,可靠性低、功耗大、体积大、成本高。随着半导体工艺和集成电路技术的快速发展,出现了许多用于频率合成的大规模集成电路。在这些大规模集成电路中,把频率合成器的主要部件如参考分频器、程序分频器、鉴相器、锁定指示器、甚至微处理器等集成在同一芯片上。再配上参考振荡器、压控振荡器、环路滤波器及高速前置分频器,即可构成完整的频率合成器。这使得频率合成器的成本、体积和功耗都大大下降,简化了设计和
[网络通信]
电力有源滤波器技术发展状况及问题探讨
随着大功率开关器件的日益广泛应用,电力系统谐波抑制及无功补偿问题变得日益迫切,电力有源滤波技术是解决上述问题的有效手段。本文简要介绍电力有源滤波技术的原理、分类和控制策略,并对电子有源滤波技术的国内外发展状况和应用中应考虑的一些问题作一些简要介绍。 1引言 电力电子技术是未来科学技术发展的重要支柱,有人预言:电力电子技术连同运动控制将和计算机技术一起成为21世纪最重要的两大技术。然而,电力电子技术带来方便、高效的巨大利益的同时,它的非线性、冲击性和不平衡用电特性,也给公用电网的供电质量造成严重污染,对公用电网注入大量的谐波和无功功率。另一方面,随着以计算机为代表的大量敏感设备的普及应用,人们对公用电网的供电质量要求
[嵌入式]
多频GSM/GPRS功率放大控制器
全球移动通信系统(GSM)是目前世界上最受欢迎的移动电话通信系统。由于GSM移动电话或DCS/PCS电话都在同一单元内采用时分多址访问(TDMA)的电路设计,因此可以提供双工通信。而正向及反向链路都采用高斯最小位移键控(GMSK)调制的电路设计。 由于GMSK调制有其固定不变的包络,因此必须采用C类射频功率放大器才可提高功率转换效率。射频功率输出必须加以严密控制才可将功耗减至最低,以及避免干扰网络上的其他用户。欧洲电信标准学会(ETSI)已就移动电话输出功率作出若干规定。例如,移动电话必须符合有关传输时标、频谱特征、谐波失真、输出功率电平以及输出噪声等的规定。(如欲查看有关性能规格的详细资料,可浏览 www.etsi.org 网页
[模拟电子]
采样电路PWM驱动电路
电力MOSFET驱动功率小,采用三极管驱动即可满足要求,驱动电路如图4所示。 由于单片机为弱电系统,为保证安全需要与强电侧隔离,防止强电侧的电压回流,烧坏MSP430,先用开关光耦进行光电隔离,再经三极管到MOSFET的驱动电路IR210l。MSP430产生的PWM波,经过光耦及后面的IR2101芯片,在芯片的5管脚输出的PWM波接到MOS—FET的门极G端,使其工作。IR2101是专门用来驱动耐高压高频率的N沟道MOSFET和IGBT的。它是一个8管脚的芯片,其具有高低侧的输出参考电平。门极提供的电压范围是10~20 V。
[单片机]
云塔科技推自主研制5G毫米波滤波器
近日,安徽云塔电子科技有限公司(以下简称“云塔科技”)联合中国科学技术大学微电子学院,发布了其自主研制的5G毫米波滤波器。 云塔科技向集微网记者表示,目前在全球范围内,工作在毫米波频段的微型滤波器解决方案近乎空白。这是中国厂商首次在5G毫米波(mmWave)频段研制成功该类微型化滤波器产品,尺寸仅为2.5×2.0mm。该类型滤波器工作在33GHz,带宽高达2GHz,带内插损小于2.7dB,带外抑制超过30dB。 据悉,云塔科技的微型化毫米波滤波器产品,不仅可以应用于各种5G终端和基站中,还可为下一代6G低轨宽带卫星互联网提供经济有效的滤波解决方案。 值得注意的是,5G频段主要分为Sub-6GHz和毫米波两大类,Sub-6GHz
[手机便携]
高通ultraSAW滤波器技术大幅提升2.7 GHz以下频段的射频性能
Qualcomm Technologies, Inc.今日推出Qualcomm® ultraSAW滤波器技术,在行业领先的无线技术组合中实现了又一项突破式创新。Qualcomm研发开创性技术、赋能全新体验、扩展移动生态系统的优良传统,为此项创新提供了坚实的基础。 射频( RF)滤波器将手机发射和接收的无线电信号从不同频段中分离出来。Qualcomm ultraSAW滤波器能够实现将插入损耗提升整整1分贝(dB),在2.7GHz以下频段范围内可以提供比与之竞争的体声波(BAW)滤波器更高的性能。 Qualcomm ultraSAW 技术可实现卓越的滤波器特性,可在600
[网络通信]
噪声的频谱分析的重要意义_频谱仪使用过程中怎样选择最好的分辨率带宽
必须认真考虑频谱仪分辨率带宽(RBW)的设置,因为他关系到频谱成分的分离,适宜的噪声基底的设置和信号的解调。 在进行有苛刻要求的频谱测量时,频谱分析仪必须精确、快速并具有高动态范围。在多数情况下,强调其中某一参数会对其它参数有所影响。因此在进行分辨率带宽 RBW 设置时需要综合权衡这些因素。 通过低电平信号的测量,可以看到使用窄分辨率带宽RBW的优点。在使用窄RBW时,频谱分析仪显示出较低的平均噪声 (DANL),且动态范围增加,灵敏度有所改进。在图1中,把 RBW 从100 kHz改变到 10 kHz将能更好地分辨 -95 dBm 的信号。 图1. 100 KHz 分辨率带宽 RBW 和10 KHz RBW的测试结果
[测试测量]