提到家庭和工业自动化、物联网(IoT)、可穿戴设备、人机接口设备(HID)众多应用的无线连接协议时,蓝牙一定是首选。为满足各种应用的需求,蓝牙技术联盟(SIG)对蓝牙规格进行了持续改进。发布4.1版大约一年后, SIG在2014年12月蓝牙发布了蓝牙规范4.2版。新的4.2主要包括三项更新 - 低功耗(LE)数据长度扩展(DLE)、链路层(LL)隐私保护以及安全性加强。这些功能提高了BLE数据带宽、隐私保护和安全性,同时还有助于降低功耗。本系列文章将详细讨论这些功能以及它们如何影响系统性能。
蓝牙低功耗(BLE)协议栈可以分成三个部分:
控制器:协议栈控制器对数据包进行了加密,转换为无线信号发送。在接收时,控制器将对无线信号解码,并重构数据包。
主机:主机由管理两个或多个设备相互通信的各种协议和配置文件(安全管理器、属性协议等)组成。
应用:可使主机和控制器实现一个特定功能的用例。
链路层(LL)
蓝牙4.2的大部分新功能都集中在链路层周围。链路层在建立可靠物理链路和功能中扮演着非常重要的角色,有助于提高BLE协议稳健性和能效。链路层功能包括广播、扫描、创建和维护连接以建立物理链路。在链路层上定义了两个角色:主设备和从设备。
数据长度扩展(DLE)
数据长度扩展能够使两个BLE设备之间的数据传输更快。为了了解DLE功能,请先让我们来看看链路层上的BLE数据包。下图所示为蓝牙4.0/4.1的链路层数据包结构。
如果我们仔细观察各数据包的开销,将发现存在1个字节的前导、4个字节的访问地址、2个字节的数据头、3个字节的循环冗余检查(CRC)和一个可选的4个字节的消息完整性检查(MIC)。当使用加密时,消息完整性检查(MIC)将与有效负载一起发送。因此,每个包含27个字节数据的加密链路层数据均含有14个字节的开销。现在,让我们来看看蓝牙4.2定义的链路层数据包结构。
相较于旧版本蓝牙规范的27字节,蓝牙4.2中的有效负载量可达到251个字节。每个数据包开销仍然保持不变,即14个字节。然而,该开销现已与多达251个字节相关联,而不是27个字节。这种最小有效负载的变化提高了吞吐量并减少了处理时间。
图4所示为当数据需要通过蓝牙4.1和蓝牙4.2从一个设备传输至另一个设备时的吞吐量。
在上图中,数据包时间的计算方法如下:
数据包时间= 8 *(前导字节的数量+访问地址字节的数量+头字节的数量+有效负载字节的数量+ MIC字节的数量+ CRC字节的数量)/数据速率 秒
对于接收数据包,不存在有效负载和MIC字节。因此,接收数据包时间为:
发送数据包时间= 8 *(1 + 4 + 2 + 3)/ 106 秒
=80微秒
含27个字节的有效负载的发送数据包时间为:
发送数据包时间= 8 *(1 + 4 + 2 + 27 + 4 + 3)/ 106秒
=328微秒
同样,251个字节的有效负载的发送数据包时间为2120微秒。
另外,如上图所示,随着各发送/接收数据包,存在两个相关的帧间间隔(T_IFS),一个为发送期间,一个为接收期间。如果某个事务的帧数量增加,则该事务的耗时也将成比例地增加。当数据长度功能被启用时,相较于蓝牙4.1,蓝牙4.2在一个帧内打包了更多数据,从而减少了每次事务处理的总时间,并增加了吞吐量(其中,吞吐量 =有效负载尺寸/总时间)。
如上图所示,对于蓝牙4.1链路层,最大有效负载尺寸为27个字节(216比特)以及该交易的总时间为708微秒,意味着约 298 kbps的理论吞吐量。
而对于4.2链路层,最大有效负载尺寸为251个字节(2008比特)以及总时间为2500微秒,意味着约 784 kbps的理论吞吐量。因此,相较于蓝牙4.1,蓝牙4.2提供了大约2.6倍的更高吞吐量。
BLE 4.2允许主设备和从设备之间协商数据长度,还允许不对称的发送和接收有效负载量。有效地利用该功能以及选择合适的接收/发送数据长度对于实现最大吞吐量具有十分重要的意义。
让我们考虑这样一个应用:BLE从设备需要将几千字节传输至主设备、从主设备接收空包并且连接间隔为8.75毫秒。假设在以下设置中协商数据长度(从设备):
情景1 – 发送 - 251个字节,接收 - 251字节
情景2 – 发送 - 251个字节,接收 - 27字节
在情景1中,如图5所示,在第一次接收/发送数据包时,接收有效负载尺寸为0字节以及发送有效负载尺寸为251个字节,耗时2.5毫秒(包括帧间间隔)。第二次接收/发送数据包也是一样的。这两个接收/发送数据包共耗时5毫秒,在此连接间隔内剩下3.85毫秒。在理想情况下,应该在同一连接间隔内存在另一个接收/发送数据包。但是,主设备的调度器不会在此连接间隔内安排另一个接收/发送数据包。这是因为调度器会基于协商的数据长度(本案例中发送/接收的数据长度均为251)来检查发送/接收数据包是否具有足够的时间。如图所示,含有接收和发送有效负载量为251字节的接收和发送数据包需要4.54毫秒。然而,前两个数据包之后的可用时间为3.85毫秒,这导致在本连接间隔内仅2个发送数据包。
在情景2中,在该连接间隔内,调度器仅需要2.64毫秒就可调度一个数据包,因此在8.75毫秒的连接间隔内可以容纳第三个数据包,如图6所示。如图所示,相对于案例1,本案例将提供高于50%的吞吐量。
尽管PDU尺寸的选择会影响吞吐量,但还存在对其产生影响的其他因素,比如,连接间隔和最大传输单元(MTU)。
数据长度的扩展可通过任何连接设备的控制器来触发。如果两个设备都支持数据长度的扩展功能,则该设备可发送一个获取更新数据长度的请求,而其他设备将通过其自己的参数来做出响应。图7所示为协商进程。
如果一台不支持数据长度扩展功能的设备接收到数据长度的更新请求时,将会返回一个未知的回复。该回复将通知发起请求的设备另一台设备不支持DLE,该设备将继续传输符合蓝牙4.1 PDU尺寸的数据。也就是说,数据长度扩展支持向下兼容。
数据长度扩展在提高吞吐量的同时,也通过减少射频活动时间从而有助于降低功耗。这是因为在蓝牙4.2中,如果数据尺寸大于27字节,所需的接收/发送数据包更少、射频活动的时间更短)。比如说,需要传输 135个字节,BLE4.1设备在连接时需要5个发送/接收数据包来传输数据;然而BLE4.2设备在传输相同数量的数据时只需一个发送/接收数据包。在无线应用中,射频通信消耗了大多数的系统电力。使用DLE,射频通信活动时间减少,可以显著延长电池寿命。
上一篇:贸泽电子即日起供货Cypress的CY8CKIT-143A PSoC 4蓝牙模块
下一篇:使用BLE 4.2的系统设计:更快、更安全、更节能-第2部分
推荐阅读最新更新时间:2024-05-07 17:17
康耐视视觉系统简化激光焊接技术
位于Schramberg的Trumpf激光公司开发和生产配有固体激光器的机器和系统,它们被部署在汽车和医疗等行业的应用环境中。此外,公司的产品还应用于一项特殊的工业环境中,即对由不同金属制成的小零件进行精密焊接。 Trumpf决定把视觉技术整合到激光焊接机的光学扫描仪中,该产品同时也称为PFO (可编程焦点的光学仪器)。公司的目标是为客户提高产品的灵活性和精确性,同时加快产品的生产过程。 视觉技术—— 具有战略意义的解决方案 在公司当前的生产环境中整合视觉系统堪称一项具有战略意义的决策。视觉系统无需手工操作就可以根据每一个零件的位置和大小自动调整焊接位置。该系统能够自动测定坐标转换数据,并且对没有视觉系统操作经验的员工来说,具
[嵌入式]
ST Bluetooth®5.2认证系统芯片问市,延长电池续航
意法半导体发布了其最新的Bluetooth® LE系统芯片(SoC) BlueNRG-LP,该芯片充分利用了最新蓝牙规范的延长通信距离、提高吞吐量、增强安全性、节省电能的新特性。优化的超低功耗射频模块在接收模式下工作电流仅为3.4mA,发射模式电流只有4.3mA,睡眠模式功耗小于500nA,可以将大多数应用所需电池容量减少一半,延长电池续航时间。 意法半导体的第三代Bluetooth系统芯片BlueNRG-LP是世界上第一个支持同时连接多达128个节点的Bluetooth LE 5.2认证系统芯片,可以让用户无缝、低延迟监控大量的连接设备,例如,通过时尚直观的手机应用界面控制各种设备。 最高可设为+ 8dBm的射频输
[嵌入式]
串行总线的计算机数控系统
1 前言
在计算机系统中,总线接口对整个系统的性能和功能都有直接影响,有关专家预测,在下一世纪里,串行总线将逐渐取代并行总线。
在数控系统中,个人计算机技术与数控技术越来越紧密地结合,由此而产生的具有开放性的PCNC数控系统,正在取代传统形式的数控系统,并成为市场的主流产品。计算机总线结构的变革,必将影响数控系统的体系结构,串行总线的应用将极大地改变现有的传统数控系统的结构形式。
2 串行总线的优点
同并行总线相比,串行总线具有许多优点。串行总线连接引脚数量少,连接简单,成本较低,系统可靠性高。串行总线对系统体系结构具有重大的影响,它的应用有助于数据流计算机体系结构的实现。
对于高速计算机系统,
[嵌入式]
600MW机组汽机低旁压力和温度自动控制系统分析
概述 旁路系统主要作用是在各种机组运行工况下,保证再热器有足够冷却,在机组启动过程阶段,配合锅炉控制汽压,使机组在启动时的蒸汽参数满足预定要求,即适应锅炉与汽轮机在启动阶段的特性,加快启动速度;在机组甩负荷时,旁路系统维持锅炉在最低允许负荷下运行,汽轮机转速在3000 rpm,或者带部分厂用电负荷下运行,待故障排除以后,可以并网,能够迅速带负荷,减少停机次数。
再热凝汽式机组旁路系统一般分为2级,即高压旁路和低压旁路,高压旁路为锅炉过热器出口蒸汽经过减温减压以后,到再热器进口,低压旁路为再热器出口蒸汽经过减温减压以后,去凝汽器,低压旁路系统设备参数如表1,监视画面如图1。
表1 低压旁路系统设备参数
[嵌入式]
提高总线电路可靠性、安全性 CAN节点设计需注意这些
CAN总线通讯已经从 汽车电子 行业逐渐向各行各业铺开使用了,例如轨道交通、矿井监控等。在设计CAN总线接口电路时需要注意哪些问题呢? 对于提高CAN总线节点的可靠性而言,离不开隔离、总线阻抗匹配、总线保护等,在设计CAN节点时要注意这些点以提高总线电路可靠性和安全性。 一、隔离 信号隔离 隔离收发器可将总线和控制电路进行电气隔离,将高压阻挡在控制系统之外,可以有效地保证操作人员的人身及系统安全。不仅如此,隔离可以抑制由接地电势差、接地环路引起的各种共模干扰,保证总线在严重干扰和其它系统级噪声存在的情况下不间断、无差错运行。如图 1所示,使用隔离收发器后,可以有效防止形成地环路,总线参考地可跟随共模电压的波动而
[嵌入式]
一种基于CPLD的交通灯控制系统设计
0 引言 随着我国经济的快速发展,车辆拥有量也随之急剧增加,再加上人口数量的膨胀,城市的交通拥挤问题变得日益突出。如何使交通灯的控制更加合理,使现有的交通资源发挥更大的效益,已经成为城市管理者和科技工作者共同关心的问题。为此,我们设计开发了一个交通灯控制系统,由于该系统采用VHDL语言自顶向下的设计方法,利用可编程逻辑器件CPLD来实现,通过外部输入可方便地设定交通灯的延迟时间,使交通灯控制数字电路设计得到了优化,提高了系统的灵活性、可靠性和可扩展性。该系统可以较好地缓解交通压力,并可实现对突发事件进行紧急处理。 在数字系统设计领域,电子设计自动化(EDA)工具已经成为主要的设计手段,随着硬件描述语言VHDL和可编程逻辑器件
[工业控制]
安全性优势显著 钠离子电池储能国家标准拟立项
近日,国家市场监督管理总局对2项拟立项钠离子电池国家标准项目公开征求意见。2项标准分别是《电能存储系统用钠离子电池和电池组技术规范》和《电能存储系统用钠离子电池和电池组安全技术规范》。由339-1(工业和信息化部(电子))归口,主管部门为工业和信息化部(电子)。主要起草单位:中国电子技术标准化研究院、中国科学院物理研究所、宁德时代新能源科技股份有限公司、深圳市比亚迪锂电池有限公司。
《电能存储系统用钠离子电池和电池组技术规范》: 本文件规定了电能存储系统用钠离子电池和电池组的术语和定义、要求、试验方法、质量评定及标识、包装、运输和储存。本文件适用于电能存储系统用钠蓄电池和电池组(以下简称为电池和电池组)。其中
[新能源]