人工智能颠覆医疗行业吗?

发布者:古宝奇缘最新更新时间:2018-04-08 来源: 电子产品世界关键字:人工智能 手机看文章 扫描二维码
随时随地手机看文章

  从1960年代初,学术界陆续展开对于人工智能的研究,一直到目前的机器学习、深度学习等观念,所带来的第三波人工智能浪潮。下面就随网络通信小编一起来了解一下相关内容吧。

  对于医疗领域来说,在1970年代初期,人工智能就已经被应用在各项检查,例如根据血液检查的结果来发现患者的感染性血液疾病,并且延伸出辅助医疗者判断采用何种抗生药物来成功的医治,比起过去所采用的经验法则,大大的提升对于感染性疾病的判断准确性。

  透过人工智能技术的力量,可以达到一瞬间完成检验

  直到最近,透过深度学习技术的能力大幅度提升影像辨识正确性,举例来说,透过X光摄影(X-ray photography)、计算机断层扫描(Computed Tomography)、核磁共振(Magnetic Resonance Imaging),以及细胞检查(Cytodiagnosi)等检测设备,能够从溃疡的发现、肿瘤增大的结果,来发现身体的异常状态。而这些检查过程与发现,已经从过去需要耗费10多天,一直到透过人工智能技术的力量,可以达到一瞬间完成检验。

  相信可以预见在不久的未来,医学领域也将出现相当具规模的医疗变革(图一、图二、图三)。对于疾病的诊断方面,以目前较简单的方面来说,已经能够透过类似建议协助的人工智能来进行,例如,可以经由在具有医疗性质人工智能的设备中输入问诊和检查结果,来获得类似诊断的建议内容。

  图一 : 从1960年代初,学术界陆续展开对于人工智能的研究。

  图二 : 伴随辨识技术提升,医学领域也将出现大模的医疗变革(A)

  图三 : 伴随辨识技术提升,医学领域也将出现大模的医疗变革(B)

  和人类一样,医疗领域的人工智能也是需要经过一定程度的学习,才能够产生对于事物判断的能力,应用了学习而来的技术,可以从拍摄的医疗影像中发现病变结果,再加上患者的症状、基因组体数据后,进而可以分析出初步的诊断结果。

  日本透过政策计划推动人工智能在医疗领域的应用

  因此,对于人工智能在医疗领域的应用方面,日本也从政府阶层开始进行计划性地推动,在2016年11月,日本政府所召开的第2届未来投资会议上,首相安倍晋三就明确的宣示,大数据(Big Data)与人工智能将会在预防、健康管理,以及远程医疗方面进行最大程度的应用,来实现高医疗质量将人工智能导入日本医疗体系之中,并且日本厚生劳动省也开始着手规划一系列相关的政策,来因应人工智能医疗时代的来临,包括医疗费用的修正、采用人工智能医疗的激励措施等等,并且预计将在2020年全面实施与推动人工智能医疗制度。

  为了达到在医疗领域更高度应用人工智能能力,高度完整且安全数据库的整建绝对有其必要性,在这方面,日本政府开始整合和建立了,包括电子病历卡、健康检查数据、医疗、照护的收据凭证数据等一元化系统数据库,来做为跨入次时代健康管理系统架构下,提供更好医疗质量的第一步(图四)。

  图四: 日本政府正进行规划的患者信息数据数据库概念图

  被称为PeOPLe的人工智能医疗管理系统,已经开始整合与保存日本各医疗机关里每一位患者的医疗诊断纪录,并且授予每个患者识别编号(医疗ID),除了方便保存与管理医疗数据之外,并且也将患者在不同医疗单位就医的数据予以统一保存管理,在未来就诊时,医疗人员可以从数据库中读取患者过去完整的就诊数据与各种检查报告。

  医疗人员方面,在未来也将统一在PeOPLe中记录每一个患者的诊疗信息,同时也可以作为患者在进行回诊时,透过人工智能技术的能力,在进行检查、诊断、治疗的同时,也可以向医疗人员提出医疗支持、建议和各种警示提醒。然而信息化之后,除了可以节省无谓及浪费的检查之外,并且能够将医疗资源进行优化的分配,并且透过匿名化的医疗数据,提供给各学术单位进行各项更为先进的医疗研究。厚生劳动省医药生活卫生局长武田俊彦表示,在未来的健康管理系统方面,在这样的构想下,医疗、照护等数据将都会被网络化,并且作为大数据的一部分,除了减轻医疗人员的负担之外,更可以透过大数据数据库,在人工智能技术协助之下,来对各地域进行下一代的医疗发展规划,让各地域的患者能够得到较为完善的医疗服务。

  不断的反复进行运算,达到快速增加高度判断的能力

  在这样次时代医疗服务体系的建构中,最重要的还是莫过于人工智能的技术力量,但是,在这里人工智能将会进行什么样的架构改变?

  最初,计算机系统只有被输入和储存图像以及文字等数据,而再进一步的可以进行简单的讯号收集、整理、辨识和分析。而加入了人工智能之后,这些讯号数据就可以被同时并存地进行特征性比较,然后对于这些特征性的文字图像进行判断。

  就如同能够对患者透过各种检查设备所拍摄而得到的图像进行分析,然后更进一步的获得诊察判断结果,同时再与数据库中的样品数据进行比对,根据所默认的规则来做出各种诊察报告。

  在以前,必须汇集各种所获得的医疗信息,以人工输入的方式,提供具有初步人工智能的计算机或仪器来进行比对分析。不过,伴随着计算机的计算能力有着飞跃性的发展,得以进行更为复杂繁重的程序计算,这样的变化,已经可以从「如果是A的话,那就会演化到B」的单纯对应关系,进步到「在A的情况下,如果出B的话,可能会演化成C」的多层判断和分析,让人工智能技术进步到可以自行「深度学习」的阶段,进而不再需要依赖人工来进行初步或比较过后的数据输入工作,凭借人工智能的深度学习能力,不断的反复进行运算,来达到数据自动辨识,快速增加高度判断的能力。

  图五 : 人工智能透过机械式的方式来有规律地进行自我学习。

  在人工智能对于医疗方面的学习、个案判断基准,都是和普通人一样,没有什么不同。长年投入人工智能开发研究的庆应义塾大学理工学部生命情报学科?原康文教授表示,医生从患者的问诊结果中,抽离出重要的关键讯息,借以作为初步和广泛程度的判断,再以结果来对患者的病理做出辨别。这时,医师还必须根据过往的学习知识和经验进行反复的思考、验证,来提升精确度,获得正确的诊断结果。人工智能医疗机制也是一样,只不过比较大的差异是,人工智能是透过复杂的运算来修正各种系数结果,并且不断的反复进行微调整,再获得最后的结果。

  将人工智能导入急救医疗提升急救成功机率

  在传统上,急救医疗的本质上就是医疗团队和时间在竞赛。而急救医疗在导入科技之后,就又多了智能手机APP和人工智能的协助。

  日本东京慈惠会医科大学,在先端医疗情报技术研究讲座担任准教授的脑神经外科高尾洋之医师,从2016年11月开始,就担负着主导利用手机APP和人工智能协助急救医疗这个计划的任务,2017年度正式开始临床应用实验,预计在2018年正式导入急救现场使用。

  在2015年时,高尾洋之医师就已经在日本东京慈惠会医科大学,有着超过3000部具有这项功能的iPHONE导入经验,并且将医疗讯息予以信息化。在2016年正式展开这项计划时,除了医院本体之外,更加入了Allm这家公司来共同开发智能手机的APP,并且整合融入了人工智能技术,称之为JOIN。

  JOIN的架构是为了在数个医疗关系者之间可以快速且有效的进行沟通、资料分析,并且让包括手术室、急救室等数个医疗关系者能够同时获得,例如X光摄影、计算机断层扫描或核磁共振摄影、医学摄影、心电图等各项身体检测结果和数据。

  图六 : 利用手机APP和人工智能协助急救医疗

  实际上,救护人员在急救现场是相当难以正确掌握患者的受伤或健康状况,并且无误地传达给后续急救的医疗人员。而利用智能手机APP和人工智能协助急救医疗这个计划,就是希望借助智能手机APP和人工智能,在紧急救护和运送的过程中,能够让后端急救团队能够及早获得患者的状况,缩短抵达后初步伤检判断时间,达到提升急救成功机率与减轻各种健康后遗症为目标。

  这个急救架构是透过人工智能来进行问诊与生命特征感测,再将所获得的信息予以分析,并且进行检伤分级(Triage)。基于这个分析结果,在医疗单位接受急救患者时,就够预先制定急救计划,以及选定运送患者对象。

  例如对于急性脑血管疾病的患者,可以在出现症状时,让紧急救护人员预先进行相关简易急救医疗行为。以脑血管栓塞的患者为例,从症状发生后的发生3小时内可经由静脉给予tPA,此类药物的使用必须靠医疗团队的合作,与时间赛跑以抢救脑细胞。并且在8小时内里用血栓清除设备实施血管内治疗,让中风后遗症降到最低的程度。而这些画面、数据、各种行动、医护人员之间的沟通,就可以透过手机中的JOIN这个APP来进行。

  更进一步的,高尾洋之医师不仅仅让JOIN这个APP担负着患者急救运送时的紧急和问诊处理,更进一步的融合人工智能来完成Cloud ER系统,初步将先以脑、心血管患者为急救对象,透过Cloud ER系统提高急救成功率与降低后遗症。

  在「Cloud ER」系统中所使用的人工智能有两大类数据分析。第一类是让患者戴上具有量测心脉、血压、心电图等等生命特征功能的医疗电子手环。第二类则是透过智能手机中的APP来收集整理患者的发病各项资料。

  当预定接收患者的医疗机构也从JOIN和Cloud ER系统获得发病各项数据之后,就能制定患者的急救计划,以及准备相关急救器材,另一方面,也可同时指示负责运送的进护人员,进行必要的急救措施,让患者运抵医疗机构之后,就能够立即获得最适切的紧急救护医疗。

  非所有的医疗人员都乐意接受人工智能医疗时代的来临

  虽然将人工智能导入医疗系统,透过政府的推动、各业者的技术整合,看起来已经是必然的趋势,但是对于现今的医疗体系以及医疗人员来说,还是必须面对无法避免的适应期。

  事实上,透过日本的专业媒体访问分析可以发现,并非所有的医疗人员都相当乐意接受人工智能医疗时代的来临,甚至有一部分的医疗行为将会被人工智能系统或者机器人所取代,这更是深深激怒了部分的医疗人员。

  根据调查,大概有85.2%的日本现行医师相信,在未来100年内,将会实现透过人工智能来进行医疗辅助。只有不到15%的医师认为即使再过100年,人工智能仍无法取代人类进行医疗行为。而对于采用人工智能产品来做为医疗辅助方面,仍旧有将近19%的医师是相当排斥,甚至完全不考虑导入人工智能医疗产品(图七、图八)。

  图七 : 预测人工智能导入医疗时间的医师比例


  图八 : 使否会采用人工智能协助医疗行为的医师比例

  就意见而言,大多接受人工智能医疗的医师都认为,采用人工智能医疗,可以达到再确认功能而预防人为疏忽,并且可以提供诊断的辅助、预防误诊,以及缩短确诊的时间,甚至可以透过人工智能医疗的力量来补强自己不熟练领域的技术和知识。

  当然,并非所有的医师都是如此正面看待人工智能医疗的能力。对于医师而言,最沉重的负担就是需要背负着“对患者的责任”,因此,最直接被反应的问题就是,当出现误诊时,是哪一方面需要负担责任?

  有些医师认为,人工机械因为无法担负责任,所以绝对不可以进行确诊的这项工作,最多只能提供医师进行确诊时的参考数据。因为就诊断上,无论是慢性患者,或者是需要进行急救的对象,在医疗行为进行时,存在太多的变化,仍旧需要依赖医师的经验不可,这一方面,人工智能是绝对无法做到的。因此,让机器人测量一下生命特征的数据就好,其他方面,还是需要交给有经验的医师,并且需要重视医师多年以来的医疗经验和能力值。

   以上是关于网络通信中-人工智能颠覆医疗行业吗?的相关介绍,如果想要了解更多相关信息,请多多关注eeworld,eeworld电子工程将给大家提供更全、更详细、更新的资讯信息。

关键字:人工智能 引用地址:人工智能颠覆医疗行业吗?

上一篇:基于兼容主流通信协议NFC收发器的安防产品应用经验
下一篇:美光新加坡第三座闪存工厂开建:SSD价格稳了

推荐阅读最新更新时间:2024-05-07 17:58

智能照明大咖论剑 探讨如何掘金蓝海市场(上)
2017年6月11日上午9点,在广州南丰朗豪3楼会议厅里,由华强聚丰旗下的电子发烧友主办的“第四届中国LED智能照明高峰论坛”隆重举行,本次会议近200人的规模,16位重量大咖带来精彩纷呈的演讲。 台湾科技大学萧弘清教授、微软物联网行业拓展总经理管震、晶丰明源智能照明产品线总监祁丰、利尔达客思产品经理安波、奥地利微电子台湾地区总经理李定翰、高为通信总经理魏心伟、恒亦明科技董事长刘耀文、佳比泰智能董事长张文彬、EnOcean Alliance CEO Mar TI n Graham、上海声瀚科技COO陈虹道、亿思腾达总经理王晓文、银河风云董事长曾雨,华为IoT平台高级营销经理姜洋、益登科技技术经理谢先国、赫飞物联董事长韩兴成、微
[电源管理]
科技巨头正在塑造一个全球AI狂欢时代
  无论从何种角度来看,人工智能都已是当下科技发展的主旋律。面对人工智能,全球科技巨头们—— 谷歌 、微软、亚马逊、Facebook、 百度 、腾讯、阿里巴巴都将“AI为先”作为自己的发展战略选择,在此领域动作频频,投入重注,在试图以人工智能重塑自我的同时,更是期待分食人工智能这盘主菜。其所表现出的行动一致性,远超当年的移动互联网。下面就随网络通信小编一起来了解一下相关内容吧。    一、中美科技巨头共同走向“AI为先”时代   面对人工智能,全球科技巨头—— 谷歌 、微软、亚马逊、Facebook、 百度 、腾讯、阿里巴巴都保持了灵敏嗅觉,纷纷投入重注,开始战略、资源倾斜,执行AI为先,试图在以人工智能重塑自我的同时,更是期
[网络通信]
香港“智能”监狱安装了测试追踪器、便便机器人和人工智能摄像头
据香港当地一篇新闻报道,香港惩教署(Correctional Services)透露,他们接下来计划对各种监控技术进行测试,以打造“智能监狱”。惩教署署长胡英明(Danny Woo Ying-ming)本周表示,这些技术旨在监控囚犯的异常行为。该系统将包括人工智能摄像头、机器人和实时心率监测。 据《南华早报》报道,这一系统的运行是为了更大程度地保障囚犯和军官的安全。三所惩教设施将参与测试,由此,我们可以进行合理推测,香港显然计划在将来将其监狱系统改造成“全智能版”。 在这项技术中,有一种机器手臂将负责对囚犯的粪便进行分类,以寻找走私毒品。目前,警察们被迫使用木棍来完成这项任务。另一项被寄予厚望的技术是一个腕带,它可以提供所有囚犯的
[安防电子]
谷歌DeepMind开发人工智能可有效检测眼疾
谷歌旗下DeepMind开发了一种人工智能,通过分析医学图像来诊断疾病,这可能是人工智能在 医疗 领域的第一个重要应用。 总部位于伦敦的DeepMind公司已经对数以千计的视网膜扫描数据进行分析,以培训一种人工智能算法,比人类专家更迅速有效地检测出眼疾的症状。 在与英国国家卫生服务机构和伦敦的摩尔菲尔兹眼科医院合作了两年,展现出“有希望的迹象”之后,将研究成果发表在一家医学杂志。摩尔菲尔兹是世界上最著名的眼科医院之一。如果结果通过同行评审的话,这项技术可以在几年内进入临床试验阶段。 DeepMind Health的临床主管Dominic King告诉英国《金融时报》:“在像医学影像这样的特定领域,你可以看到我们将在未来几年内用人
[医疗电子]
亚马逊正研发升级版AI家庭机器人 内含类ChatGPT功能!
根据媒体5月9日援引公司的一份内部文件报道,该公司正在研发家用Astro的升级版本。这将是Astro的一个新阶段,也是亚马逊在现有产品中添加()模型的案例。 新版本的Astro机器人将拥有类似ChatGPT的功能,其中包含大型语言模型(LLM)和其他先进的AI模型,使其更好地理解自己观察到的东西,并更地对事物做出反应。 升级版Astro Astro是一款亚马逊投入巨资研发的家庭机器人,由智能助手Alexa驱动,但到目前为止,它似乎没有实现亚马逊的崇高理想。 目前来看,Astro不光能力平庸,还很难购买。这是因为亚马逊此前表示,只有接受邀请的人才能购买Astro。 内部文件显示,升级版的A
[机器人]
调查显示亚太区 CIO 较全球采用更多颠覆性科技
近年来愈来愈多人开始尝试部署新兴科技,而这情况在亚洲更加普遍!根据市场研究机构 Gartner 最新调查,亚太地区的首席信息总监较全球其他同业采用更多颠覆性科技,例如物联网(IoT)、人工智能(AI)及对话式接口。 43% 的首席信息总监表示他们曾经或短期内会计划使用物联网(全球使用率为 37%),人工智能则占 37%(全球为 25%)。28% 表示已投放资源于对话式接口(全球为 21%),虚拟现实(VR)及增强现实(AR)则占 20%(全球为 17%)。13% 表示已采用区块链或分布式分类账技术,较全球的 9% 多。 Gartner 副总裁及分析师 Andy Rowsell-Jones 表示:“亚太地区有不少成功和具
[网络通信]
【行业报告 】2017中国人工智能产业报告
中国人工智能产业规模2016年已突破100亿,以43.3%的增长率达到了100.60亿元,预计2017年增长率将提高至51.2%,产业规模达到152.10亿元,并于2019年增长至344.30亿元。 一、人工智能产业是一个广阔的领域 人工智能产业是指以人工智能关键技术为核心的,由基础支撑和应用场景组成的,一个覆盖领域非常广阔的产业,与人工智能的学术定义不同,人工智能产业更多的是经济和产业上一种概括。 二、中国人工智能产业处于上升阶段 中国人工智能产业规模2016年已突破100亿,以43.3%的增长率达到了100.60亿元,预计2017年增长率将提高至51.2%,产业规模达到152.10亿元,并于2019年增长至344.3
[机器人]
消息称苹果最快年底推出M4系列芯片:更擅长处理AI任务
4 月 12 日消息,彭博社的马克・古尔曼在最新一期 Power On 时事通讯中,认为苹果正加速研发 M4 系列 Apple Silicon 芯片,有望提前到 2024 年年底装备在新款 Mac 设备中,且重点提高处理 AI 任务的性能。 苹果公司于去年 10 月发布了 M3、M3 Pro 和 M3 Max 芯片,古尔曼认为苹果同样会在今年 10 月前后推出 M4 系列芯片。 古尔曼认为苹果会率先升级 iMac 、低端 14 英寸 MacBook Pro 、高端 14 英寸 MacBook Pro 、16 英寸 MacBook Pro 和 Mac mini 机型;然后在 2025 年春季更新 13 英寸和 15 英寸 MacBo
[家用电子]
热门资源推荐
热门放大器推荐
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved