如何设计高精度可靠的4-20mA通信?

发布者:EEWorld资讯最新更新时间:2019-05-22 来源: EEWORLD作者: ZLG立功科技·致远电子关键字:通信系统 手机看文章 扫描二维码
随时随地手机看文章

使用4-20mA模拟量进行通信时,无论是发射端还是接收端的电路设计相对于数字通信都会比较复杂,那为什么还要使用呢?本文将结合设计案例带你了解4-20mA通信。

 

1、为什么使用4-20mA通信?

 

在远距离、复杂的工业现场应用场合常常伴随有较大的干扰源,磁场辐射干扰、传导干扰等,如果使用传统的数字通信容易受到干扰,因为接收端的输入阻抗无穷大,在受到微弱噪声信号干扰后,会产生较高的电压噪声,不利于数据传输以及接口的安全使用规范。而使用模拟量(4-20mA)进行通信时,由于耦合的噪声信号较为微弱,通常为nA级别,则不受此影响,而且电流源驱动没有线压降问题。

 

 

2、4-20mA代表了什么数据意义?

 

基于国际标准文件提出的《过程控制系统用模拟信号(第一部分):直流电流信号(GB/T 3369.1-2008/IEC 60381-1:1982)》中规定了4-20mA信号为首选直流电流通信信号,如表一:直流电流信号范围所示。文件中规定在采用4-20mA通信信号的情况下,4mA代表原始数据的0刻度,20mA代表原始数据的满刻度,0mA作为断电、断线检测。

 

 

如远端PT100热电阻温度监测系统,通过4-20mA通信方式将远端现场数据传回PLC,实现对现场温度变化监测。PT100的测量范围为-200-850℃,则4mA代表-200℃,20mA代表850℃,实际温度计算公式如下:

 

T=(850+200)℃/(20-4)mA*(I-4mA)-200℃

 

其中:T为当前测试温度;I为当前采集电流;一般用低于2mA代表热电阻测温模块系统断电或者通信线路断线。

 

3、4-20mA通信系统的一般电路设计

 

4-20mA模拟量通信电路如图二 4-20mA通信电路架构所示,应用现场前端由传感器组成,经由变送器将非标准的传感器信号转换为标准4-20mA通信信号,再发送到远端控制设备,由接收器接收上传至PLC控制端。

 

目前市面上有较多的传感器设备或者执行器的成品模块已经集成了4-20mA通信功能,用户只需要自己搭建接收模块即可。接收模块正如下图二 4-20mA通信电路架构所示,包含了采样器、信号调理电路、ADC(模数转换)以及MCU(数据传输以及处理)。但如果4-20mA通信携带的是一个高精度、数据范围比较宽的数据时(比如上个章节所提及的远端PT100热电阻温度监测系统,数据量范围-200-850℃,精度0.1%±1℃取最大值),接收模块精度达不到0.1%,则会引起数据传输误差,发挥不了传感器性能,那怎么去确保接收模块的采样数据准确呢?

 

 

4-20mA通信电路架构

 

首先我们先来分析一下接收链路可能导致采集精度误差的原因:a、采样电阻的初始精度以及工作在极限环境(高低温max)下时,电阻温漂引起采样电压的漂移;b、调理电路,该电路限制采样精度的因素比较多,如运放的失调电压、输出噪声、衰减或增益网络误差引起ADC端的电压采集误差;c、ADC单元电路误差,如基准漂移、基准噪声,电源噪声、PCB布局等这都是外部影响ADC转换精度因素;d、ADC自身所带来的转换精度误差,如ADC的失调误差、增益误差,无噪声分辨率低、积分非线性差等问题,带来转换精度误差。

 

为了缩短用户的开发周期, ZLG推出了一款带有隔离功能的高精度模拟量采集模块(TPS08U)一次性解决了如上所有问题。该模块在设计上,考虑了如上的所有因素,采用极低温飘的电阻,号称零漂移的运放,24bit分辨率的ADC,在极优的参数下选取最具性价比元器件,并优化layout走线布局等实现以最小体积达成8通道测量。同时,每个模块出厂均通过严格的测试校准,保证出厂的每个模块都能达到指标要求。

 

 

4、TPS08U模块使用简介

 

TPS08U典型电路如下图所示,只需简单的外围电路就可以实现8通道的模拟信号采集(4-20mA and 0-5V),精度0.1%(电压为满量程精度)。模块电源采用3.3V供电,通信接口SPI,同时,模块集成了电源及通信隔离电路(隔离DC:2500V),尺寸大小长*宽*高:31.8mm*20.3mm*6.5mm。详细资料可向当地销售获取。

 

 


关键字:通信系统 引用地址:如何设计高精度可靠的4-20mA通信?

上一篇:Qualcomm和HMD Global签订5G多模全球专利许可协议
下一篇:ADI推出全新毫米波 (mmWave) 5G 基础设施的新型解决方案

推荐阅读最新更新时间:2024-11-04 00:39

通信系统中二次电源电路的滤波保护电路及缓启电路原理
本文主要论述了二次电源系统中-48V电路经DC/DC变换3.3V模块中的滤波、保护电路,以及在采用电源热备份集中供电系统中,拔插采用3.3V电源的单板时抑止浪涌电流的电源缓启电路。 引言 现代集成电路工艺已进入亚微米阶段,数字信号的上升/下降时间普遍为亚纳秒量级,这使高速数字系统的设计面临巨大挑战。晶体管尺寸越来越小,使得其工作电压越来越低,同时时钟频率不断上升,微处理器(CPU)和各种专用芯片(ASIC)集成的功能越来越多,其消耗的功率也越来越大,这对电源系统的稳定性和可靠性提出了更高的要求。 在通信系统设备中,电源的设计通常分一次电源和二次电源两部分,一次电源系统的输入是50Hz交流电,电压根据国家不同分220V和
[电源管理]
<font color='red'>通信系统</font>中二次电源电路的滤波保护电路及缓启电路原理
分析基于单片机的数字通信系统位同步提取
  通信系统都包括一个发射器(TX)、一个接收器(RX)和传输介质。TX和RX使兼容于传输介质的信息信号得以传输,其中可能涉及到调制。一些系统采用某种形式的编码来提高可靠性。将本文中讨论的信息视为不归零(NRZ)二进制数据。而传输介质可能是诸如非屏蔽双绞线(UTP)或同轴电缆那样的铜电缆,光缆,或者是用于无线通信的无障空间。在所有情况下,信号都将被介质极大地削弱并叠加上噪声。噪声(而非衰减)通常决定着一种通讯介质是否可靠。   在数字通信系统中,发送端按照确定的时间顺序,逐个传输数码脉冲序列中的每个码元。而在接收端必须有准确的抽样判决时刻才能正确判决所发送的码元,因此,接收端必须提供一个确定抽样判决时刻的定时脉冲序列。这个定时脉冲
[单片机]
分析基于单片机的数字<font color='red'>通信系统</font>位同步提取
基于CAN总线的EPS通信系统研究
  引言   现代汽车电子技术的发展使汽车的电子化程度越来越高。电控系统虽然提高了汽车的动力性和经济性,但随之增加的复杂电路必然导致车身布线庞大而复杂。因此提高控制单元间通信的可靠性、实时性、安全性已成为需要迫切解决的问题。以研发和生产汽车电子产品著称的德国Bosch公司为此开发了CAN总线协议,并使其成为国际标准。电动助力转向(E1ectric Power Steering System,EPS)是根据驾驶员意图和车辆的运行工况而进行助力的转向系统。EPS的控制过程是动力转向系统综合控制的过程,所以EPS的电子控制单元与车内其他电子控制单元的通信及协调控制便很重要。在EPS系统中引入CAN总线技术,使EPS电子控制单元与其他车载电
[单片机]
基于CAN总线的EPS<font color='red'>通信系统</font>研究
基于CAN 总线的电动汽车电源管理通信系统设计
  随着石油价格的上涨以及环保要求的提高,电动已经成为是未来汽车发展的一个重要方向。对于以电池供电的全电动力系统或者以发动机和蓄电池混合动力系统而言,电源管理系统设计是关系车辆性能的一个重要因素,设计时需要考虑综合车辆总体设计方案和外部使用环境,为了节约电源,还需要设计一定的控制策略保证电源的最佳利用。所以很有必要对全电车辆的电源管理系统进行深入探讨。 1,电动汽车能源管理的重要性   电动汽车的电源管理,主要作用在于充分发挥燃料的燃烧效能,使发动机在最佳工况点附近工作,并通过电动机和蓄电池的能量储备与输出,及时调节车辆运行工况和外界路面条件之间的匹配关系。经过十多年的发展,电动汽车的动力系统设计方面,目前最有实用性价值并已有商业
[嵌入式]
卫星通信系统误码率测试
1.必要性分析 现代通讯中数据通讯越来越重要,评估误码率是评判传输系统性能的最终标准。误码率的测试都是作为一个系统指标主要集中在基带信源码的测试。随着系统集成度的复杂性增加,系统功能划分细化导致了在分机系统中也需要进行误码率的测试。接收机,发射机的误码测试已经越来越多的出现在我们面前。而误码率测试系统所面对的信号已经由传统的信源信号转变为模拟的中频信号,甚至是射频信号。 2.平台的组成框图 系统组成:81250误码率分析系统。 如图1,测试系统由安捷伦ParBERT 81250A 并行误码测试系统构成。ParBERT 81250A 并行误码测试系统采用VXI模块化构架,为了满足用户不同的测试需求,以及增强系统配置扩展升级的
[测试测量]
卫星<font color='red'>通信系统</font>误码率测试
GPRS无线通信系统中的MSC1210应用设计
引言 近年来,通信技术和网络技术的迅速发展,特别是无线通信技术的发展,使得电力系统的自动化程度进一步提高,GSM网络出现后,技术人员很快把GSM模块嵌入到各种仪器仪表中(如多功能电能表、故障测录仪、抄表系统和用电负荷监控等),从而使这些仪器仪表具有远程通信功能。 GPRS是在现有GSM系统上发展出来的一种新的数据承载业务,支持TCP/IP协议,可以与分组数据网(Internet等)直接互通。GPRS无线传输系统的应用范围非常广泛。几乎可以涵盖所有的中低业务和低速率的数据传输,尤其适合突发的小流量数据传输业务。 本文设计的GPRS无线通信模块,内嵌入了TCP/IP协议,采用工业级的GPRS模块,适用于单片机数据采集传输系统没有TC
[应用]
用于通信系统的软件自定义测试平台
  基于软件定义的现代通信系统包括蓝牙、WiMAX、CDMA2000、ZigBee、GSM、EDGE、RFID,而这些无线通信标准正以前所未有的速度日渐成熟(图1)。同时,由于Microsoft、Vodafone与Google等公司的联合,通过V CAST欣赏热门的足球比赛,应用Google Earth取得区域定位信息也愈发普遍。随着全球许多国家无线通信应用的迅猛发展,为满足用户需求而增加数据带宽已经成为移动通讯的最大挑战。   由于产品发布的激烈竞争,研发设计的速度已经超过了测试所能负荷的速度。在ZigBee与802.11n标准完善之前,制造商就向市场发布了基于此协议的设备。传统仪器制造商预先定义的标准测试系统也已经被取代。这
[测试测量]
用于<font color='red'>通信系统</font>的软件自定义测试平台
测控通信系统:信息联通的纽带
——— 中电科技集团保障“神舟七号”侧记之二 测控通信系统是为航天器、导弹飞行试验传输测控数据、话音、图像及提供标准时间、频率信号等信息的专用通信系统。在“神舟”飞船的七大系统中,测控通信系统至关重要。如果说航天器是风筝的话,那么测控站和分布在三大洋的远洋测量船就是牵住风筝的线,而地面控制系统就好比放风筝的人,测控与 通信 总体方案设计水平的高低,直接关系着载人航天工程的成败。 中国 电子 科技集团公司总经理王志刚表示,“神舟七号”任务与前两次载人航天飞行任务相比,无论是任务的性质还是技术状态都发生了重大变化,具有许多新的鲜明特点。为了适应这种变化,对测控通信系统进行了比较大的改造,例如增加了中继星设备等。
[模拟电子]
测控<font color='red'>通信系统</font>:信息联通的纽带
小广播
最新网络通信文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved