用TPS62200作为OMAP1510的动态电压缩放器

发布者:DelightWish123最新更新时间:2009-12-20 来源: TI关键字:便携设备  TPS62200  OMAP1510  动态电压缩放器 手机看文章 扫描二维码
随时随地手机看文章

  毫无疑问的,延长便携式电子产品之电池使用寿命将有助于该产品的销售。对微处理器而言,降低内部时脉频率以及/或降低核心电压均有助于降低其功率消耗。动态电压缩放(Dynamic voltage scaling,DVS)技术常用来降低核心电压以降低功率消耗。本文将说明如何使用TPS62200降压型转换器来实现动态电压缩放技术并作为OMAP1510处理器之电源。
  
  下列式子将说明使用TI-DSP核心之微处理器的功率消耗计算方式:
  
  PC~(VC)2×f其中,PC代表核心功率消耗,VC为核心电压,f则为核心时脉频率。
  
  因此,降低内部时脉频率以及/或降低核心电压均可降低核心之功率消耗。动态电压缩放技术一般常用来降低核心电压以达到降低核心功率消耗的目的。本文将说明如何使用TPS62200降压型转换器来实现动态电压缩放技术并作为OMAP1510处理器之电源。
  
  OMAP1510处理器具有两种操作模式:AWAKE(唤醒)模式以及低功耗的DEEP-SLEEP(深睡眠)模式。在AWAKE模式时,OMAP1510处理器需要1.5伏特的输入电压。在DEEP-SLEEP模式时,OMAP1510处理器可操作在1.1或1.5伏特的输入电压下。在DEEP-SLEEP模式时,若输入电压VDDx=1.1伏特,OMAP1510处理器的功率消耗将会降至最低。图1为使用TPS62200可调式降压型转换器实现动态电压缩放技术之电路图。图中还包括了一个外加的回授电阻RX以及被称为低功率模式(Low Power Mode,LPM)的数字控制信号,该信号在电压由1.5伏特降为1.1伏特时会转为低电平状态。


  
  图1:使用TPS62200作为OMAP1510的动态电压缩放器。
  
  控制信号LPM透过RX将电流注入回授网络中以藉此改变输出电压。式1以及式2将电流在回授节点VFB上加总。对式1以及式2同时求解并将其代回以求解RB可得式3以及式4。这些方程式可用来计算注入电阻RX以及底端回授电阻RB。在图1中,RT=402kΩ、VO_HI=1.5V、VO_LO =1.1V、VLPM_HI =2.8V、VLPM_LO=0V以及VFB=0.5V。

      图2为当负载电流降至300微安培时的输出电压瞬时。瞬时时间过长的原因是因为用来将10μF输出电容器由1.5伏特放电至1.1伏特的放电电流仅有300微安培。[page]


  
  图2:两种输出电压间的瞬时。
  
  TPS62200非常适用于实现动态电压缩放技术。当OMAP1510操作在AWAKE模式下时,TPS62200操作在PWM模式以达致高效率的目的并提供较高的负载电流。当OMAP1510操作在DEEP-SLEEP模式下时,TPS62200操作在PFM模式以更有效率的提供数百微安培的低负载电流。举例来说,当使用TPS62200以及一个3.6伏特,1Ah的锂离子电池作为OMAP1510芯片的输入电源时,本架构可达到下列的特性:
  
  1)不使用动态电压缩放的DEEP-SLEEP模式(TPS62200操作于PFM模式):VO=1.5伏特,300μA,效率=93%。
  
  2)使用动态电压缩放的DEEP-SLEEP模式(TPS62200操作于PFM模式):VO=1.1伏特,250μA,效率=93%。
  
  3)AWAKE模式:VO=1.5伏特,100mA,效率=96%。假设微处理器操作在AWAKE模式下的时间占5%,操作在DEEP-SLEEP模式下的时间占95%,该一电池将可使用九个小时。

关键字:便携设备  TPS62200  OMAP1510  动态电压缩放器 引用地址:用TPS62200作为OMAP1510的动态电压缩放器

上一篇:Diodes推出为USB应用优化的高电流电源开关
下一篇:Vishay推出PowerBridge封装单列直插桥式整流器

推荐阅读最新更新时间:2024-05-03 11:09

铁氧体磁珠在小型便携设备中的应用
前言   随着手机、便携式音乐播放器和便携式游戏机的普及,人们开始要求这些电子设备的设计更加小型化、高性能化、低能耗和低噪音。因此,大量的超小尺寸的电容器、电阻器、EMI静噪滤波器被大量在使用在这些小型便携式设备上。   片状铁氧体磁珠,结构简单,因其具有尺寸小、使用方便的特点而被大量用于EMI静噪用途。村田制作所早已能够批量生产0402尺寸(1.0×0.5mm)片状铁氧体磁珠BLM15系列,0201尺寸(0.6×0.3mm)BLM03系列。然而为了达到和大尺寸产品相同的静噪效果就必须增加磁珠内部的线圈数量,提高其阻抗值。这样直流电阻就会随之增加、从而电路功耗就会增加。这也就成了必须解决的课题。   此次通过开发新材料和
[嵌入式]
铁氧体磁珠在小型<font color='red'>便携设备</font>中的应用
高效D类音频功放在便携设备中的应用
随着能源的日益紧张,电子系统对于能效方面的要求也逐步提高,尤其是对于电池供电系统,其对功耗的要求更为苛刻。随着手机、MP3/4等多媒体便携设备的普及,音频功放已经成为音频部分的标准配置。无论是系统工程师还是最终用户都已经不再满足于响亮地播放个性化的音乐,继而对音频功放提出了更高的要求:消耗更少的电流以延长电池的使用时间,在整个音频范围内提供完美音质,良好的射频抑制能力减小电流声,稳定的输出功率以确保扬声器不受损坏。 未来,市场对于高效率的D类功率放大器的需求会逐步增加,D类放大器在便携设备中的应用具有非常广阔的前景。根据市场调研机构Gartner的报告:D类放大器在2006年至2011年之间的复合年成长率将达15.6%,从3.
[模拟电子]
高效D类音频功放在<font color='red'>便携设备</font>中的应用
针对不同低压便携设备背光或闪光应用的LED驱动方案
为低电压便携式设备背光或闪光应用选择合适的发光二极管(LED)驱动器方案是设计人员面临的一项挑战,因为既要考虑延长电池使用时间,又要减小印制电路板(PCB)面积及高度。目前,小型液晶显示器(LCD)面板及键盘背光以及指示器应用大多采用白光LED和RGB三色LED;手机和数码相机中的闪光光源通常使用高亮度LED。因此,这些应用需要优化的驱动器解决方案,使用低电压便携式LED驱动器拓扑结构。 安森美半导体身为全球高能效电子产品的首要高性能硅方案供应商,提供涵盖电 感型、电荷泵型、线性等不同拓扑结构的低压便携设备背光或闪光方案。这些方案中,电感型方案可提供最佳的整体能效,电荷泵型方案使用低高度陶瓷电容作为能 量转移机制,占用的电路板
[电源管理]
针对不同低压<font color='red'>便携设备</font>背光或闪光应用的LED驱动<font color='red'>器</font>方案
针对便携设备的高端负载开关及其关键应用参数
  对于各具特色的移动电话、移动GPS设备和消费电子小玩意等电池供电的便携式设备应用来说, 高端负载开关 一直受到众多工程师和设计人员的青睐。本文将以易于理解的非数学方式全方位介绍基于MOSFET的高端负载开关,并讨论在设计和选择过程中必须考虑的各种参数。   高端负载开关的定义是:它通过外部使能信号的控制来连接或断开至特定负载的电源(电池或适配器)。相比低端负载开关,高端负载开关“流出”电流至负载,而低端负载开关则将负载接地或者与地断开,因此它从负载“汲入”电流。   高端负载开关不同于高端电源开关。高端电源开关管理输出电源,因此通常会限制其输出电流。相反地,高端负载开关将输入电压和电流传递给“负载”,并且它不具
[电源管理]
针对<font color='red'>便携设备</font>的高端负载开关及其关键应用参数
便携设备供电的创新型双输出LDO电源解决方案
   引言   在现代应用中,传统的低压降稳压器(LDO)正逐渐被开关电源(SMPS)所取代。虽然LDO是一个成本低廉而且强固耐用的电源解决方案,但是它耗电很大。越来越多的便携设备厂商,像数码相机、手机、PDA制造商,都在研究用效率更高的解决方案取代LDO的可行性。开关解决方案的大小,即电源的物理尺寸,通常是这些厂商无法逾越的障碍。   STw4141是一个创新的开关电源,只使用一个外接线圈就能产生两个独立的输出电压。因为其内在的开关特性,这个芯片的效率很高,而且所需的外部组件数量极少。该产品的效率可以与两个独立的开关电源媲美,尺寸相当于两个独立的LDO电源。因此,能够取代便携设备中的线性电源,或者缩减开关稳压器的物理尺寸
[电源管理]
为<font color='red'>便携设备</font>供电的创新型双输出LDO电源解决方案
便携设备LCD背光LED驱动方案简述
进入二十一世纪,能源消耗日益成为整个人类社会关注的焦点。出于对于照明的基本需求,如何更有效的利用各种能源产生更多的照明,成为探索新的照明技术的巨大驱动力。从原始的燃料照明到白炽灯,从荧光灯到各种发光材料的探索,催生出LED照明技术。在如今社会,各种媒体设备照明环境需求的差异化,进一步促进了人类探索如何利用各种高亮度LED进行照明。LED在照明方面的应用已经吸引广泛关注。 LED基本原理及性能特点 首先我们来介绍一下LED的基本原理以及性能特点。LED的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。发光二极管的核心部分是由p型半导体和n型半导体
[电源管理]
<font color='red'>便携设备</font>LCD背光LED驱动方案简述
如何为低压便携设备背光或闪光选择适合的LED驱动方案
白光LED广泛用于小型液晶显示器(LCD)面板及键盘背光以及指示器应用。高亮度LED则用于手机和数码相机的闪光光源。这些应用需要优化的驱动器解决方案,能够延长电池使用时间、减小印制电路板(PCB)面积及高度。在这些应用领域,常见的LED驱动器方案涉及线性、电感型或电荷泵型不同拓扑结构,各有其特点。例如,电感型方案总能效最佳;电荷泵方案由于使用低高度陶瓷电容,占用的电路板面积和高度极小;线性方案非常适合色彩指示器以及简单的背光应用。安森美半导体提供所有这三种类型拓扑结构的LED驱动器方案(参见图1),满足用户不同的应用需求。 图1:低压便携设备应用的不同LED驱动器拓扑结构示例 在电荷泵型方案方面,安森美半导体提供支持不同调
[电源管理]
如何为低压<font color='red'>便携设备</font>背光或闪光选择适合的LED驱动<font color='red'>器</font>方案
热门资源推荐
热门放大器推荐
小广播
最新手机便携文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved