如何利用FPGA解决手持设备MPU的功耗问题

发布者:温馨生活最新更新时间:2010-07-17 来源: 中电网关键字:FPGA  手持设备  MPU  功耗 手机看文章 扫描二维码
随时随地手机看文章

  消费类手持设备市场正呈跳跃式发展。便携式产品处理能力不断增加,所支持的应用越来越多;产品更新换代速度加快,新产品必须满足上市时间要求,以便获得最大的市场机会;产品生命周期的缩短要求缩短开发周期,同时更加强调可复用性和可重复编程能力。新兴手持设备市场还有一个有趣的趋势,即一个系列中的每种设备的出货量越来越少,但系列设备间的定制功能却越来越多,进而有效提升了产品的总出货量。这样,关键挑战就变成了如何开发一个可广泛复用同时又可定制的系统。

  为应对上述挑战,越来越多的设计人员开始使用FPGA进行手持产品的开发。FPGA的功能日益强大和丰富,而门数、面积和频率也在不断增加。FPGA的开发和周转时间要比定制ASIC短得多,可重复编程的额外优势使得FPGA成为手持嵌入式系统领域中颇具吸引力的解决方案。在基于ASIC或FPGA的设计中,设计人员必须认真考虑某些性能标准,他们面临的挑战主要体现在面积、速度和功耗方面。

  与ASIC一样,供应商在FPGA设计中也需要应对面积和速度的挑战。随着门数不断增加,FPGA需要更大的面积和尺寸来适应更多的应用,设计工具需要采用更好的算法以便更有效地利用面积。不断演进的FPGA技术也给设计人员带来一系列新的挑战,电源利用率就是其中之一,这对于为手持或便携式设备设计基于FPGA的嵌入式系统来说是急需解决的问题。

  嵌入式系统中的FPGA

  典型的嵌入式系统由处理器、存储器、包括USB、SPI、I2C在内的标准接口以及液晶显示器、音频输出等外设组成。设备的核心仍是处理器和处理器接口,它们通过板载连线连接到各个外设。系统性能主要取决于处理器性能,而处理器通常具有非常标准的架构,因而不容易定制。

  有时处理器可能忙于处理来自低速外设的信息,虽然在这种情况下处理器使用率可能达到100%,但并不是在做以微处理器为中心的事务,而是工作在特别低的性能水平。不管其内核频率是多少,微处理器必须等待来自低速时钟的数据。这也会导致较高的功耗,因为处理器的利用率是100%。其结果将缩短电池寿命,并且需要更大的散热器或风扇进行冷却,最终影响整个系统的可靠性。

  于是,FPGA在这方面开始发挥重要作用,因为它们能从处理器卸载许多外设交互任务。如图1所示,利用标准千兆TCP/IP网络实现的未压缩音视频数据流的嵌入式分布系统。它有一个专用DSP处理器,这个处理器通过一个标准总线接口与赛灵思的FPGA相接,FPGA再连接到各个低速外设。

  图1:用于音频/视频分布系统的FPGA架构。[page]

  作为启动开发套件,这个FPGA通过I2S接口连接12位的PCM音频输入和12位的PCM音频输出;它还连接视频编码器和解码器,并与I2C从器件和RS232器件进行通信;连接到FPGA的通用I/O很少。与处理器相连的标准总线工作在高速的66MHz,而音频外设工作在低速的1.182MHz;UART和I2C串行接口分别工作在56.6kHz和100kHz。由于数据传输发生在多个时钟域,因而只有处理器能配置数据流。

  在这种情况下,处理器不再与低速外设交互,而由FPGA从低速的PCM ADC音频器件读取数据,并将数据存放在FPGA的内部缓存中。处理器可以周期性地从这个缓存读取数据,或者当缓存中有足够数据时,由FPGA向处理器发送一个中断。这样,处理器就有更多的时间执行以处理器为中心的必要工作,在空闲时则进入睡眠模式。

  功耗问题

  在电池供电的嵌入式系统中,节能是最重要的考虑因素。功耗可以被分成三大类:启动功耗、静态功耗和动态功耗。设计人员无法控制启动功耗,而启动功耗在决定电源选型中扮演着重要的角色。大多数最大电流值指的就是这个阶段所达到的值。但静态功耗和动态功耗是两个不同的领域,通过合理的规划和以下正确的指导原则,使用FPGA的嵌入式设计人员可以在功耗优化方面作出显著改进。

  静态功耗是指系统不工作时仍有电流流过元件时产生的功耗,一般由器件偏置电流和漏电流引起。静态功耗也取决于工作电压,降低工作电压可以降低静态功耗,但这个策略并不总是掌握在设计人员手中。设计人员能做的是定义合理的架构,在这种架构下需要使用的资源最少,同时尽可能使用资源共享,并以最高效的方式使用FPGA模块。

  减少静态功耗的另外一种技术是在设计周期早期进行功耗预估,改变拓扑或使用不同的IP模块。例如,赛灵思的xPower Estimator工具这时就非常有用,它能很早知道设计是否满足功耗预算。早期阶段的功耗预估也许不完全准确,但作为指导工具确实很有帮助。

  动态功耗是由于FPGA门的一些行为(比如信号开关)引起的,当两个门暂时导通时,将产生电流流动和电容。信号开关的速度决定了功耗的大小。影响动态功耗的另外一个因素是电路内部结构中形成的固有电容。动态功耗是时钟频率、正在开关的门数量和这些门开关速率的函数。门扇出和走线上的电容负载会增加动态功耗,并且功耗值正比于电容、电压和频率平方的乘积。

  设计人员对这种功耗具有最大的控制能力,他们可以利用许多技术实现动态功耗的最大改善。降低信号开关频率可以使功耗呈指数式下降。正如图1所示,用于UART的控制逻辑、奇偶校验或帧超限错误都发生在速度较低的时钟域。即使门数没有减少,功耗也会下降。设计人员还可以通过降低整体工作频率(如果可行的话)来减小动态功耗。例如,在完成可行性和性能分析后,设计人员决定上述设计不仅能工作在133MHz,也能工作在66MHz。DSP支持这两种速率,而减小电压也有助于降低功耗。

  另外一种技术是减少处于工作模式的有效门数。有时某部分逻辑虽然在开机时被打开和配置,但实际上不要求做任何事情。例如,模拟音频捕获单元处于工作状态,设备却不在执行任何数字SPDIF音频捕获。在这种情况下,一般的数字SPDIF音频捕获电路仍将执行数据采样、双相解码等工作,因而无谓地浪费功率。如果禁用整个数字SPDIF音频捕获电路,使电路中不发生任何信号开关动作,那么动态功耗将会显著降低。

  设计人员可以禁用传送到这部分电路的时钟来达到这个目的。一种简单的做法是将时钟信号与使能信号相“与(AND)”,如图2所示。如果使能信号是低电平,那么与门的输出将保持低电平。如果使能信号为高电平,与门将输出时钟信号。

图2:一种简单的时钟选通机制。

  图2:一种简单的时钟选通机制。

  还可以使用其它方法。如果可能并且拓扑又支持的话,可以通过复接地址和数据线来减少信号线数量。在我们这个例子中,到视频编码器的输出是16位数据,我们可以把它复接成8位,然后分别在时钟的两个沿(上升沿和下降沿)发送出去。这样做也能节省动态功耗。此外,选择串行接口代替并行接口也能降低功耗。使用带较低电容负载的LVTTL或LVCMOS I/O也很有用。[page]

  嵌入式处理器

  将处理器嵌入到FPGA中是手持设备设计人员可以采用的又一种策略,它可以带来很多好处。首先,减少了定制处理器带来的上述挑战。其次,外设和处理器之间的交互发生在FPGA内部,因而可以减少I/O数量。由于I/O会消耗相当多的功率,此举也能达到一定程度的节能效果。赛灵思的Virtex-5版本支持PowerPC 440处理器、硬处理器和MicroBlaze软处理器,所有这些处理器都可以被设计人员用来创建高端或低端应用系统。

  随着90m和65nm半导体技术的发明,门的尺寸在不断缩小,导致静态功耗问题越来越突出,在对功耗指标越来越敏感的今天,这是一个极具挑战性的现象。由于功耗问题获得了众多FPGA供应商的重视,在这个领域中已出现许多令人兴奋的新技术。低功耗设计将决定一个系统的集成能力有多强,业界也迫切需要将注重功耗的设计技术标准化。

关键字:FPGA  手持设备  MPU  功耗 引用地址:如何利用FPGA解决手持设备MPU的功耗问题

上一篇:UL发展低能耗无线充电器的第一版认证标准
下一篇:简化蓝光录放机设计,助力设备厂商抢攻主流市场商机

推荐阅读最新更新时间:2024-05-03 11:14

一种基于FPGA的A超数字式探伤系统的研究
摘要:简略介绍了超声探伤的基本原理,并在此基础上提出了一种基于FPGA的A型数字式超声系统的构成方式,着重介绍了系统的硬件构成。其中,基于FPGA的数字信号处理模块从根本上解决了传统A型探伤仪的采样速度低、处理速度慢的问题。 关键词:MCS196kc单片机 无损检测 超声波探伤 FPGA 数字信号处理 DAC曲线 超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。超声波在媒介中传播,有波的叠加、反射、折射、透射、衍射、 散射及吸收衰减等特性,一般遵循几何光学的原则。A超探伤仪采用幅度调制(Amplitude Modulation)显示,在显示屏幕上以横坐代表被测物的深度,纵坐标代表回放脉冲的幅度。 超声波探伤的
[半导体设计/制造]
英特尔为服务器引进FPGA技术
英特尔(Intel)日前宣布其OEM厂商将针对数据中心推出搭载Arria 10 GX FPGA的服务器,评论认为,此举将有助该公司在服务器市场上为FPGA另辟突围蹊径,而且一旦成功,将为其他对手设下超越障碍。   据EEJournal报导,自从主宰服务器市场数十年的英特尔买下Altera后,外界便预测前者将有意为数据中心运算发展带来重大变革,也就是将基于FPGA为主的加速器引进主流。如今英特尔宣布,包括戴尔(Dell)与富士通(Fujitsu)在内等OEM,将推出预搭载内含Arria 10 GX FPGA的可程式化加速卡(Programmable Acceleration Card;PAC)服务器。   稍早英特尔也曾表示,Acc
[半导体设计/制造]
Maxim针对手持设备推出电源管理IC
Maxim Integrated Products推出高度集成的电源管理IC(PMIC)MAX8819A。该器件集成了单节锂离子(Li+)/锂聚合物(Li-Poly)充电器以及能够为系统无缝分配电源的专有的智能电源选择器电路。为降低BOM成本,MAX8819A集成了3路2MHz降压转换器和一路具有串行步调亮度控制的升压转换器,用于驱动2至6个WLED。MAX8819A的方案尺寸小于90mm2、高度仅为1mm,是尺寸最小的电池供电器件电源管理方案。该器件理想用于便携式媒体播放器(PMP)、MP3播放器、GPS设备、以及其它手持式设备。 MAX8819A的智能电源选择器电路控制电池、USB/AC-DC适配器和系统负
[手机便携]
Maxim针对<font color='red'>手持设备</font>推出电源管理IC
英特尔和Altera在嵌入式展上发布专为AI打造的边缘和FPGA产品
全新的边缘优化处理器和FPGA在零售、工业和医疗保健等边缘计算市场中推动AI无处不在 今天,英特尔及其子公司Altera在嵌入式展(Embedded World)上,宣布推出全新边缘优化处理器、FPGA以及市场就绪的可编程解决方案,致力于将强大的AI功能扩展到边缘计算。这些产品将为适用于零售、医疗保健、工业、汽车等行业的人工智能边缘设备提供动力。 英特尔公司副总裁兼网络与边缘解决方案事业部总经理Dan Rodriguez表示,“下一代英特尔边缘优化处理器与独立GPU,可发挥强大AI功能,从而助力企业将AI与计算、媒体和图形工作负载更加无缝地结合。从制造业到医疗保健行业,英特尔凭借其丰富的边缘AI经验,及边缘就绪芯片
[网络通信]
英特尔和Altera在嵌入式展上发布专为AI打造的边缘和<font color='red'>FPGA</font>产品
意法半导体展示针对高能效应用的超低功耗技术
中国,2011年4月12日 ——意法半导体(STMicroelectronics,简称ST)成功展示引领全球的新一代智能功率技术,这项新技术将大幅降低从医疗设备到混合动力汽车充电器等各种电子系统的耗电量。 随着全球市场对电子和电器设备日益增长的需求,以及减少石化燃料发电的趋势,提高终端设备的能效已成为全球电子厂商的研发重点,而这也推动意法半导体研发新一代智能功率技术。 通过与全球领先的医疗设备厂商合作,意法半导体成功研制出超声波扫描仪演示芯片,从而验证了这项新半导体技术商用化的可行性。这款演示芯片可以处理100多个通道,能够满足需要数千个通道的下一代扫描仪的需求。这是目前市场上现有技术所无法实现的高集成度,现有的芯
[电源管理]
FPGA系统的供电要求和最新DC/DC稳压器解决方案
随着FPGA制造工艺尺寸持续缩小、设计配置更加灵活,以及采用FPGA的系统的不断发展,原来只采用微处理器和ASIC的应用现在也可以用FPGA来实现了。最近FPGA供应商推出的新型可编程器件进一步缩小了FPGA和ASIC之间的性能差别。尽管这类器件的可配置性对设计工程师很有吸引力,但使用这些器件所涉及的复杂设计规则和接口协议,要求设计工程师经过全面的培训,并需要进行参考设计评估、设计仿真和验证工作。另一方面,FPGA应用中非常复杂的模拟设计,例如用于内核、I/O、存储器、时钟和其它电压轨的DC/DC稳压器,也要求新的解决方案。本文讨论的高性能DC/DC转换器有助于系统设计工程师克服这些挑战。 FPGA系统的供电要求 1.
[嵌入式]
基于FPGA的LED电视动态背光系统设计
LEDTV意即采用LED背光技术的液晶电视。当前,以LED为背光源的液晶电视具有轻薄、节能、环保一系列优点,成为电视和显示器市场的主流产品。通过调节LED背光源电源电压或工作电流的大小,可以方便地改变LED的发光强度,这就使得以降低功耗为目的的液晶电视LED背光动态调节技术获得迅速的应用,而LED纳秒量级的响应速度,为LED背光的动态调节提供了保证。 LED背光模组区分底背光和侧背光两种方式。底背光又叫直下式,是指LED灯安装在液晶背面,均匀分布在面板的后方。底背光方式散热好、整体亮度均匀、画面细节逼真、动态背光效果好,目前主要应用于大尺寸和高端液晶电视市场。侧背光又叫侧入式背光,是指LED灯安装在液晶面板上下两侧或者四周,利
[电源管理]
基于<font color='red'>FPGA</font>的LED电视动态背光系统设计
AMD收购Xilinx,FPGA将如何发展?
AMD签署了一份最终协议,以350亿美元的股票交换收购Xilinx,为其几乎所有主要市场与英特尔展开正面交锋奠定了基础。 市场趋势驱使AMD收购Xilinx 尽管市场对FPGA的需求与日俱增,但此次收购只剩下Lattice、Achronix和QuickLogic等几家公司还是纯粹的FPGA厂商。英特尔在2015年以167亿美元收购Altera。Microsemi在2010年以4.3亿美元收购了Actel,而2018年又被Microchip以约83.5亿美元的价格收购。此外,还有一些eFPGA供应商,包括Flex Logix、Achronix、Menta和QuickLogic。 Xilinx一直是FPGA领域的霸主,如
[嵌入式]
小广播
最新手机便携文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved