5G射频前端模组前世与今生

发布者:GHR2596最新更新时间:2022-01-27 来源: 爱集微关键字:5G 手机看文章 扫描二维码
随时随地手机看文章

最近十几年中,射频前端方案快速演进。“模组化”是射频前端演进的重要方向。

射频前端的“模组化”究竟是什么, 它是怎么来的,又有什么挑战?

带着以上问题,本文对射频前端模组的发展过程做一个梳理,对射频前端产品模组化进程中的挑战和未来可能的演进做一个讨论。

01.射频前端的模组化是什么?

射频前端是指天线后,收发机之前的部分。射频前端主要有PA(功率放大器)、Switch(开关)、LNA(低噪声放大器)及Filter(滤波器)构成。

射频前端的模组化方案(Integrated Solution)与分立方案(Discrete Solution)相对应。发射通路中的模组化是指将PA与Switch及滤波器(或双工器)做集成,构成PAMiD等方案;接收通路的模组化是指将接收LNA和开关,与接收滤波器集成,构成L-FEM等方案。模组化方案与分立方案的区别如下图所示。

图:分立方案(a)与模组方案(b)实现的射频前端系统

根据模组内集成器件的不同,射频前端模组也有不同的名称。常见的模组名称及集成的器件如下表所示。

表:不同射频前端简写及集成子模块

在3G及4G的早期时代,手机需要覆盖的频段不多,射频前端一般采用分立方案。到了4G多频多模时代,手机需要众多器件才能满足全球频段的支持需求,射频前端也变的越来越复杂;同时,分立方案在一定程度上无法满足高集成度、高性能的需求,集成模组方案得到了规模化采用。目前,iPhone中已经全面采用模组化方案,根据拆机分析网站eWisetech的拆机分析,在2020年至2021年华为、小米、OPPO、vivo、荣耀等多个厂商发布的手机中,处于1500至2000人民币价位带的多款手机已采用模组化方案 [1]。

02.5G射频前端模组的前世

 2000-2009年:

 先驱者的尝试,PAMiD萌芽的10年 

射频前模组方案中,最具代表性的就是发射通路的PAMiD模组。PAMiD是PAModule integrated with Duplexer的缩写,早期也被称为PAD,是集成了PA、开关与滤波器的模组。

最早的PAMiD可追溯到2000年初,两家先驱型射频前端公司Triquint及Agilent看到集成模组化带来高集成、高性能及低成本优势,开始做集成模组化的尝试,两家公司均实现了开创性的工作。

Triquint是当时领先的CDMA射频前端供应商,在并购了滤波器厂商Sawtek后,Li, P., Souchuns, C.,和Henderson, G.于2001年左右开始模组化产品TQM71312的研发。2003年,Microwave Journal  报道了该产品的工作,指出模组化设计将带来高性能、高集成度、小尺寸及高易用性,取得了40%的平均电流降低 [2]。这是行业内第一个公开发布和报道的集成模组产品,在后续行业综述中,这项工作被引用为集成模组产品的开端。

图:(a)Triquint于2003推出的模组产品TQM71312

(b)Triquint对其模组产品的说明

在报道中,Triquint的集成模组产品系列命名是TritiumTM。功不唐捐,先驱者的付出并没有白费。苹果公司在2008年推出的首款支持3G的iPhone手机iPhone 3G中,首次采用了模组方案。而iPhone 3G中用于支持3G信号的射频前端就是Triquint TritiumTM III系列模组芯片[4]。Triquint2014年与RFMD公司合并成立Qorvo公司,Triquint在集成模组的优势,在Qorvo时代依然延续。

图:iPhone 3G所采用的Triquint PAMiD模组

值得一提的是,当年Triquint参与业界首款开创性集成模组的3名设计人员中,有2位今天依然活跃在业界一线,引领和推动着行业发展,对工程师来讲射频行业实在是一个事业常青的领域。

关注到PAMiD的另外一家公司是Agilent。Agilent是有悠久历史和传承的射频前端厂商,源于HP。Agilent于2001年开始实现FBAR滤波器的量产,到了2002年,实现了千万级出货 [5],将自己的射频PA产品与滤波器产品做整合变成了顺理成章的选择。AFEM-7731 是Agilent于2005年推出的CDMA PAD产品。与Triquint公司的TQM71312类似,AFEM-7731内部集成一路CDMA PA及一个双工器。得益于FBAR的低插损,Agilent表示AFEM-7731可以取得优秀的线性和效率性能 [6]。

图:Agilent于2005年推出的

CDMA集成模组产品AFEM-7731

或许是看到射频前端巨大的发展前景,2005年12月12日,Agilent的射频前端部分从Agilent独立出来,成立新公司Avago,成为当时最大的非上市独立半导体公司,并于2009年上市。2016年,Avago与Broadcom合并,新公司更名为Broadcom。

尽管Avago具有FBAR技术带来的滤波器性能优势,但在2000年初,它的射频功率放大器处于弱势,集成模组产品的进展并不尽如人意。直到2010年左右,基于新工艺和新功率合成架构的射频功率放大器获得性能优势,进而带动了集成模组产品的成功。2012年起,Avago在PAMiD的产品及之后的Broadcom公司的射频前端模组产品,被大量应用于iPhone系列手机中。

2010-2019:

 国际厂商推动,模组方案主流化的10年 

苹果的引领

2010年,苹果推出iPhone4手机,单款机型销量超过5,000万部,是当时最成功的iPhone手机。从2010年开始,苹果公司开始对智能手机的全面引领。在iPhone4手机中,依然采用Triquint TritiumTM系列PAMiD方案实现3G射频前端。

在2012年发布的首款支持4G的iPhone手机iPhone5中,iPhone采用了Triquint、Avago及Skyworks的模组化产品 [7]。苹果继续坚定的采用模组化方案。

图:iPhone5 (A1429型号)射频前端方案,

采用模组化方案进行设计

在这一时期射频前端供应商在模组化也进行了坚决的投入。为了实现模组化中模块的优势整合,一系列射频前端公司也进行了合并:

2014年,RFMD宣布与Triquint合并,成为Qorvo公司。

2014年,Skyworks与松下成立合资公司,2016年Skyworks将合资公司全资收入旗下。

2017年,高通宣布与TDK成立合资公司RF360,2019年高通将合资公司合资收入放下。

图:射频前端公司的整合

除了在苹果手机中使用的定制化射频前端模组方案,各个射频前端供应商开始将模组化产品推向公开市场。Skyworks在2014年推出SkyOne®方案,Qorvo也在2014年推出RF FusionTM方案。Skyworks在对SkyOne方案的介绍中指出:“SkyOne® 是首款将多频功率放大器及多掷开关同所有相关滤波、双工通信及控制功能整合在一个单一、超集成封装当中的半导体设备,所用空间还不到行业最先进技术的一半”[8]。

图:Skyworks与Qorvo向公开市场推出PAMiD方案

FEMiD:模组化的另外一种选择

虽然PAMiD模组化方案有诸多的性能优势,但其供应劣势也相对明显:厂商必须要同时掌握有源(PA及LNA,Switch)及无源(SAW、BAW或FBAR)等能力,才有办法设计出PAMiD模组。而同时掌握这些资源的厂商只有Skyworks、Qorvo、Broadcom及Qualcomm等少数具有完整资源的厂商。

于是,华为、三星等终端公司着手推动FEMiD(Front-end Module integrated with Duplexer)方案。FEMiD是将天线开关及滤波器整合为一个模组,交由滤波器公司提供;PA依然采用分立方案,由PA公司提供。这种方案有效的发挥了无源公司与有源公司的特长。华为、三星等终端也因此摆脱了对PAMiD厂商的绝对依赖。

图:PAMiD与FEMiD方案对比

(a)PAMiD方案 (b)FEMiD方案

2016年,PAMiD与FEMiD的主要供应商如下。Broadcom、Skyworks及Qorvo是主要的PAMiD供应商,村田和RF360是主要的FEMiD供应商[7]。

图:PAMiD与FEMiD主要供应商

03.5G射频前端模组的今生

 Phase6/7系列 

  PAMiD方案的归一  

不过,与iPhone中模组化方案的绝对主流相比,早期公开市场的模组化方案推广并不顺利。原因是Skyworks与Qorvo各自定义,所推广的方案并不兼容,在技术上和供应上都给平台适配和客户使用造成困扰。

为了解决方案统一的问题,MTK平台、国内头部手机厂商及Skyworks/Qorvo射频前端厂商联合发起Phase6系列射频前端集成方案定义。在Phase6方案中,Low Band (包括2G) 与Mid/HighBand两颗PAMiD构成完整发射方案。

图:Phase6与Phase6L方案的定义

由于方案归一, 并且终端厂商、平台厂商及芯片厂商联合参与定义,Phase6系列方案自2016年推出后,得到华为、小米、OPPO及vivo等手机厂商认可。在对于性能及集成度有高要求的高端手机中得到使用,模组化方案得到了普及。5G到来之后,Phase6系列方案演进至Phase7/7L,依然维持PAMiD模组化定义。

  2020至之后:

 国产开始形成突破  

随着2019年底运营商5G陆续商用,2020年5G元年正式开启。5G到来之后,手机终端需要支持更多的频段。并且5G定义了3GHz以上,6GHz以下的超高频(UHB,Ultra-High band)频段,对射频前端性能提出了更高要求。

经过两年的方案迭代,5G方案已基本收敛。主要分为Phase7系列方案及Phase5N两种方案。两种方案在Sub-6GHz UHB新频段部分方案相同,均为L-PAMiF集成模组方案;在Sub-3GHz频段分别为PAMiD模组方案和Phase5N分立方案。 

图:5G手机射频前端方案

Sub-6GHz UHB频段L-PAMiF:国产已成熟商用

Sub-6GHz UHB频段为5G新增频段,频率高、功率大,且增加SRS切换等复杂功能,集成LNA、PA、滤波器、收发开关及SRS开关的L-PAMiF成为主流选择。

在Sub-6GHz UHB L-PAMiF产品中,国产厂商逐渐形成突破。2019年12月,在中国5G正式商用的2个月之后,慧智微n77/78/79双频L-PAMiF S55255-11量产,国产射频前端厂商首次与国际厂商同时同质推出产品。S55255系列产品在2020及2021年陆续被国际头部手机终端所采用。2020年,该产品获得“中国芯”重大创新突破产品奖,2021年慧智微获得GTI年度荣誉奖(2021 GTI Honorary Award)。

2021年,国产其他射频前端厂商陆续推出UHB L-PAMiF产品,在未来演进中,国产UHB L-PAMiF产品会越来越有竞争力。

Sub-3GHz频段:国产亟待突破

相比于Sub-6GHz,虽然Sub-3GHz模组频率更低、功率更低,不需要复杂的SRS开关等,但由于Sub-3GHz频段较多,需要集成的滤波器及双工器更多,并且是SAW、BAW及FBAR等声学滤波器,对滤波器资源的获取、多频段的系统设计能力提出了高的要求。

对于Sub-3GHz PAMiD/L-PAMiD模组产品设计,主要的挑战有:

1. 全模块子电路的设计和量产能力

需要射频前端厂商有模块内每个主要电路的成熟设计及产品化能力,如各频段的PA、LNA及开关等,并且各子模块无性能短板。

2. 强大的系统设计能力

全集成模组本身构成一个复杂的系统,涉及到发射与接收之间隔离、各频段之间的抑制及载波聚合的通路设计等等问题。射频前端不再是一个单独的功能模块,需要厂商有强大的系统分析与设计能力。

3. 小型化滤波器资源

小型化可集成的滤波器资源是模组设计的稀缺资源,目前在Sub-3GHz用到的主要是WLP(Wafer Level Package,晶圆级封装)或CSP(Chip Scale Package,芯片级封装)两种封装结构的滤波器。两种滤波器的比较如下图所示。WLP滤波器尺寸小、与模组内其他模块的设计中有优势,是未来模组内滤波器的发展方向。

图:WLP与CSP两种封装结构下的滤波器比较

以上能力的同时具备是设计Sub-3GHz 模组产品的必要条件,也是国内射频前端厂商面临的挑战。在国内厂商对以上挑战未完全实现突破的情况下,国内厂商在Sub-3GHz只能提供分立方案。目前Sub-3GHz集成与分立方案的比较如下:

图:Sub-3GHz典型的模组方案与分立方案比较

虽然有诸多问题和挑战,射频前端模组仍是国内射频前端厂商必须攻克的产品类别。慧智微在这个产品方向上较早进行了积累,并形成了系列成果。慧智微射频前端的PA/LNA模块采用可重构架构,在模组产品设计中有以下优势:

1. 集成度更高,晶圆更少,有助于兼容较大尺寸的滤波器。

2. 具有软件调谐特性,有助于集成之后的二次适配。

3. 多代产品持续积累,经过验证的封装管控能力。

基于以上优势,慧智微推出多款射频模组产品。如:

-在2019年12月份所推出的Sub-6GHzn77/78/79 5G双频L-PAMiF模组产品,是业界集成度最高的模组产品,产品在头部客户多款手机、物联网终端使用。

-针对物联网市场,慧智微推出L/M/H Band小型化全频段PAMiD模组 S55010-11,产品采用兼容于Phase6/7/7L Low-band PAMiD的6.0x7.6mm2的小尺寸pin脚设计,集成L/M/H 频段,一颗物料可满足Cat.1市场小型化和集成化需求。可大大减少调试时间,提升客户产品上市速度(Time-to-Market)。

-慧智微Phase7L/7LE L-PAMiD产品正在开发之中


关键字:5G 引用地址:5G射频前端模组前世与今生

上一篇:日本将试验激光与卫星通信:速度可达10Gbps
下一篇:高通孟樸:持续推动5G技术演进 全球化发展和产业协作是大

推荐阅读最新更新时间:2024-11-19 11:44

高通依靠移动端5G蓄势 携中国厂商组成冲锋第一梯队
据报道,5G起航冲锋第一梯队已经组成。主要领导人还是高通,据悉,高通牢牢抓住了智能手机大发展的机遇,依靠移动端的5G蓄势,携中国厂商OPPO、vivo、小米、联想等发布“5G领航计划”,赶超三星、苹果也不再是一句口号。 虽然临近中国传统新年,但作为5G上最为活跃的科技厂商,高通却毫不懈怠。在近日的一场技术峰会上,高通请来了中国手机厂商中的“半壁江山”,共同宣布了“5G领航”最新计划。 这项计划囊括了联想、小米、OPPO、vivo等厂商,在该计划下,高通将为合作伙伴打造开发顶级和全球5G商用终端所需的平台。此外,这些企业预计最早可在2019年推出高端5G设备。 高通总裁克里斯蒂安诺·阿蒙表示,中国未来将成为全球5G市
[网络通信]
三星最便宜5G新机:Galaxy A32现身认证
随着5G手机的生产技术不断成熟以及成本下降,三星终于要为它的入门款Galaxy A系列普及5G。 1月3日消息,三星Galaxy A32 5G近日在Bluetooth SIG现身认证,网站曝光了三星A32 5G的三个型号名称,分别是SM-A326B_DS,SM-A326BR_DS和SM-A326B。 综合此前媒体报道,三星A32 5G曾以SM-A326B出现在Geekbench,显示其搭载Android 11,配备4GB RAM和联发科天玑720 SoC,从如此规格来看该机明显是Galaxy A系列的入门款机型,将成为三星最便宜的5G手机。 三星Galaxy A32 5G以型号SM-A326J出现在FCC上,显
[手机便携]
三星最便宜<font color='red'>5G</font>新机:Galaxy A32现身认证
工信部表态:推5G、光纤为代表的双千兆网络发展
中国的5G发展已经小有成就,建成5G基站超81.9万个,5G终端超过3.1亿。工信部日前也表态下一步要推进以5G和光纤网络为代表的“双千兆”网络协同发展,国内的无线、有线网速将双双超过1000Mbps。   5月27日,2021中国国际大数据产业博览会在贵阳市开幕,工信部副部长刘烈宏指出,下一步,要重点做好以下工作:一是推进以5G和光纤网络为代表的“双千兆”网络协同发展。   二是加强数据中心与智能计算、人工智能等技术协同,更好地推动大数据赋能千行百业。   三是构建新型工业网络基础设施,支持企业开展“5G+工业互联网”融合应用创新,建立完善数据安全管理机制。   此前工信部发布《“双千兆”网络协同发展行动计划(2021-2
[手机便携]
5G落实万物联网愿景,兼具高容量/高速率/低延迟特性 
5G前景佳,晶片商瞄准此波商机,已分别针对LTE演进技术、5G新技术/新频段投入开发,希望能夺得下一代行动通讯先机,并于穿戴式装置、工业自动化等新兴物联网应用中占得一席之地。 行动通讯技术约每十年出现一次跳跃式的大幅度进展,而每一阶段都改变了全球行动通讯的脉动;对于新一代5G通讯技术,目前业界一致将目标订于2020年实现商业系统部署。 2015年,5G技术的全球发展正式进入研发、全面标准化的关键时期,国际电信联盟(International Telecommunication Union, ITU)已完成第五代行动通讯愿景规画,包含命名、整体目标及时程等内容,并于2015年启动5G标准化前的相关研究。 针对5G能
[物联网]
紫光展锐周晨:5G会给存储产业带来强劲需求
在中国闪存市场峰会上,紫光展锐执行副总裁周晨以《5G存储,无限市场》为主题进行了演讲。站在不同的产业角度,周晨分享了5G时代给存储市场带来的需求和变化。 在演讲中,周晨主要提到了三个核心观点。首先是因为人性的关系,整个消费类产品对存储需求是无止境的;其次SoC是起到了发动机的作用,因为它是用户体验和内容的承载者,它会带来带宽和处理能力的增加,而这两点是应用的基础设施。当基础设施提升,带来的用户体验也随之提升,最终的结果,其实就是存储需求的增长。存储Memory是这个领域里面的粮食,是不可或缺的。最后周晨认为,5G一定会显著提升存储容量和性能需求。 消费领域对存储容量需求持续增长 因为容量已满,导致手机无法拍照的情况大家都有遇到过,
[手机便携]
紫光展锐周晨:<font color='red'>5G</font>会给存储产业带来强劲需求
5G 手机耗电大 它怎样帮你偷偷省电?
最近我在做几款新手机的续航测试,发现这些手机虽然都是 5G 高性能手机,但它们的续航却能跟过去的 4G 手机几乎保持同一水准。   按道理说,手机在加入 5G 模块后,天线增多、吞吐能力更强,所消耗的电量理应比 4G 手机更大,但为何像 Galaxy S20 这种电池只有 4000mAh 的小身板 5G 手机,也能有 4-5 小时的(重度)亮屏时长?   如果我们再往前看,还能发现一个有趣的现象,过去几年里,旗舰手机的电池容量普遍都是在 3500-4500mAh 这个标准范围内。   而且即便手机性能在一直升级,手机每次的亮屏时长也依然还是在 5-6 个小时,如果电池更大那甚至还能达到 7 小时左右。   实际上,随着
[手机便携]
<font color='red'>5G</font> 手机耗电大 它怎样帮你偷偷省电?
中国联通:5G商业化运营9月见分晓
在日前召开的“2019凤凰网科技峰会”上,中国联通终端与渠道支撑中心总经理王启明表示,5G流量单价是4G的十分之一,用户的月缴费不会有太大改变。同时他预测,三大运营商9月份应该是会正式宣布5G商业化运营。 此前,在中国联通2019年度中期业绩发布会上,中国联通董事长兼首席执行官王晓初称,目前联通推出的5G功能包费用最低为190元,在长远的计划里将谋求根据用户的质量、速度的不同差异化定价。 中国电信将于9月在北京率先推出5G新号段,主要适用于新购买5G电信号码的用户。北京日报还从可靠渠道获悉,中国电信的5G套餐资费预计将从199元至599元不等。 中国移动前董事长王建宙在《财新时间》访谈中表示,按照每个比特计算,5G的资
[网络通信]
能源互联网与5G技术如何实现耦合?
当前,放眼四海,无论是德国的工业4.0,还是中国制造2025,应对新一轮全球竞争所采取的国家战略都需要借助网络来实现。当前,以AI为代表的智能化技术正在掀起第四次工业革命浪潮。以5G为代表的移动通信技术正与AI、大数据紧密结合,开启一个万物互联的全新时代。 如果说能源是工业化的血液,则能源网络就是工业化的神经。5G网络不仅给我们带来更好的带宽体验,而且还背负着一个更重要的使命——能使垂直行业以超高带宽、超低时延以及超大规模连接改变垂直行业核心业务的运营方式和作业模式,全面提升传统垂直行业的运营效率和决策智能化水平。 作为典型垂直行业的代表,能源电力对通信网络提出了新的挑战。能源互联网将构建一个以电力系统为核心和纽带、多类
[新能源]
小广播
最新手机便携文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved