无功功率计量中移相法的FPGA实现

发布者:DreamySerenity最新更新时间:2012-08-23 来源: 21ic关键字:无功功率计量  移相法  fpga 手机看文章 扫描二维码
随时随地手机看文章
   

摘要:无功功率计量方法中的移相法有两种实现方法,一种是基于采样点平移,另一种是利用希尔伯特滤波器。在Matlab 上对这两种方法进行了设计、仿真,并采用EP2C50 型号的FPGA 实现了希尔伯特滤波器。数据表明基于采样点平移的方法有局限性, 而希尔伯特移相无功算法具有移相准确的特点,保证了无功功率的精确计量。

在电力系统运行时, 电网提供的能量有两部分: 一部分是有功功率, 用于能量单向转换; 一部分是无功功率, 用于电路内电场和磁场的能量交换。无功功率对外不做功, 但是对供电系统和负荷的正常运行十分重要,在电网中流动会引起电压和功率损耗。因此, 必须计量电力用户从电网吸收以及电网传送的无功功率的大小。

移相法是无功功率计量算法中的一种, 它是利用无功功率和有功功率之间的相位角相差π/2 关系, 用计算有功功率的乘法器来计算无功功率。

本文采用了两种方法来实现移相法, 在Matlab 上对这两种方法进行了设计、仿真, 并采用EP2C50 型号的FPGA 实现了希尔伯特滤波器。

1 无功功率与有功功率的关系

假设电压、电流如式(1) 、式(2) 所示:

则有功功率、无功功率分别为:

式(1)~ 式(4) 中,0~n 表示谐波次数,Uk 、Ik分别为电压电流幅值,φk为电压、电流的相位差; 式(3) 表示有功功率,式(4)表示无功功率。式(4)与式(3)相位角相差π/2 ,针对无功功率计算的移相法就是为了得到这π/2 相位差值, 这是利用移相法计算无功功率的理论依据, 即用计算有功功率的乘法器来计算无功功率, 这在数字信号处理中十分有用。在实际应用中,乘法器的两个输入序列变成移相后的电压序列与电流序列就可以实现无功功率计算。而在计算有功功率时已经获得了电压的采样值、电流的采样值及电压电流之间的相位角, 当采样点数满足计算谐波无功电能的奈奎斯特采样定理时, 针对计算无功功率, 有两种方法可以实现对离散信号的π/2移相: 一种是基于采样点平移来实现; 另一种则是通过Hilbert 变换来实现。[page]

 

   

2 基于采样点平移的移相法

基于采样点平移的无功计量理论是将得到的离散的采样点信号进行π/2 移相( 若N 为信号一个周期内的采样点数, 则π/2 移相就是移动N/4 个点), 然后采用式(3)计算无功功率。如图1 所示,曲线1 是原正弦波信号;曲线2 是基于采样点平移π/2 后的信号, 从图中可以看出,基于采样点平移的移相法精确地实现了π/2 移相。

但是这种方法是针对基波频率的采样点移相, 实际应用时有其局限性。

(1) 基于采样点平移方法要求被采样的信号只包含基波分量。假如对一个包含基波和3 次谐波的信号( 基波的每个周期2π 内) 进行100 次采样, 那么基波的π/2移相就是移动25 个采样点, 但是, 由于3 次谐波的周期缩为基波的1/3 ,25 个采样点对于3 次谐波而言, 已经是移相3π/2 了。如图2 所示, 曲线1 是原正弦波信号;曲线2 是理论上平移π/2 后的信号, 曲线3 是基于采样点平移后的信号, 实际已经平移了3π/2。

(2) 基于采样点平移还要求每个周期的采样点数是4 的整数倍, 否则将不能被4 整除而得不到π/2 的移相。如图3 所示, 曲线1 为原正弦波信号, 一个周期内采样点为75, 不是4 的整数倍; 曲线2 为理论移相π/2 的信号, 曲线3 为基于采样点平移的信号, 与曲线2 信号对比已有一定的偏移。

基于采样点平移的无功计量方法虽然存在其局限性, 但仍被一些要求不高的场合采用, 主要是其实现相对简单, 对硬件的性能要求也不是很高, 但是当电网中的谐波成分提高时,基于采样点平移计量无功电能的精度就很难保证。[page]

 

   

3 Hilbert 变换计算无功功率

3.1 Hilbert 数字滤波器基本原理

理想的Hilbert 变换的定义为:

其幅值和相角分别为:

由式(6)~ 式(7) 可以看出,Hilbert 数字滤波器的幅值特性为1, 信号通过Hilbert 数字滤波器后, 其负频率成分进行相移π/2, 正频率成分进行相移-π/2。可见,Hilbert 数字滤波器能用于实现式(4) 计算无功功率。

3.2 FIR 型Hilbert 数字滤波器的Matlab 设计

线性相位FIR 数字滤波器的设计方法主要有窗函数法、频率抽样法和等波纹切比雪夫法( 即最优法) , 本文采用等波纹切比雪夫法进行数字滤波器的设计。对于50 Hz 的工频基波信号, 若考虑最高谐波次数为19, 则可以将该数字滤波器所关心的频率范围设计为40 Hz~960 Hz。根据奈奎斯特采样定理, 采样频率Fs 应不小于2 倍的最高次谐波频率, 所以至少取2 kHz。

Hilbert 数字滤波器取N 为奇数, 设所要设计的滤波器的频率响应为, 逼近加权函数为W(w), 用线性相位FIR 数字滤波器的H(w) 做逼近函数, 则逼近误差函数为:

令δ=max{|E(w)|} , 数字滤波器的设计问题就是寻找使δ最小的系统函数H(w),即获取最优的单位冲激响应h(n)。所以数字滤波器应有式(9)所要求的频率响应:

图4 所示为等波纹切比雪夫法设计的Hilbert 数字滤波器的幅频特性和相频特性。从图中可以看出该数字滤波器具有良好的幅频特性和相频特性, 能获得严格线性相位及很好的衰减特性。

[page]

   

图5 为频率为150 Hz 的正弦波信号经过Hilbert 滤波器以后的信号。

由仿真结果可知所设计的Hilbert 数字滤波器能精确地将所输入的电压谐波信号的基波及每次谐波都移相,并在此基础上计算获得精确的无功功率值。

3.3 FIR 型Hilbert 数字滤波器的FPGA 实现

3.3.1 FIR IP 核的生成

Altera 公司提供的FIR IP 核是一个高性能、参数化的IP 核, 可以用来实现FIR 滤波器。该IP 核支持全并行结构、全串行结构、多位串行结构、可变的多时钟结构等多种结构, 滤波器的参数可以通过该IP 核的参数化界面进行设计,也可以将在第三方软件中设计好的滤波器系数导入该IP 核中从而完成滤波器设计, 它的所有输入输出信号格式都与AvalON 总线的STreaming 结构的接口相符,可以方便地加入到应用工程中。

本文中FIR 滤波器的实现方法是将Matlab 产生的滤波器系数导入Quartus ii 中的FIR IP CORE 中。图6是Quartus 生成的FIR IP 核。

3.3.2 FIR IP 核的的验证

由于所设计的Hilbert 滤波器的频率范围为40 Hz~960 Hz, 所以验证时将用频率为150 Hz 正弦波信号通过所设计的滤波器, 观察结果来验证该滤波器是否实现了π/2 移相。

本文讨论了无功功率与有功功率之间的关系, 以及计算无功功率方法中移相法的两种方法, 根据在Matlab中对基于采样点平移的移相法和Hilbert 滤波器法的仿真可以看出, 基于采样点平移的移相法在实际应用中有局限性, 只能在一些要求不高的场合采用。而Hilbert 滤波器法可以做到移相准确、计量精度高, 因此, 基于Hilbert 变换的移相算法是无功计量中较好的方法。

关键字:无功功率计量  移相法  fpga 引用地址:无功功率计量中移相法的FPGA实现

上一篇:基于VHDL +FPGA 的自动售货机控制模块的设计与实现
下一篇:基于FPGA的高速多路视频数据采集系统

推荐阅读最新更新时间:2024-05-02 22:17

颠覆传统逻辑 全新FPGA系列开启目标设计平台时代
赛灵思公司宣布:公司隆重推出全新一代旗舰产品系列-高性能Virtex -6和低成本Spartan -6 FPGA,开启了 “目标设计平台”新时代。新的目标设计平台将帮助系统设计工程师极大地提高生产力, 并将开发成本降至最低。 在当前充满挑战的商业和技术环境中,为了保持创新能力和竞争力,可编程能力越来越多地成为电子产品生产商的必需。赛灵思联合第三方合作伙伴新推出的目标设计平台为系统设计师提供了更简单、更智能且在战略上更可行的设计方法,帮助他们更容易地创建基于FPGA的面向多种不同市场和应用的片上系统(SoC)解决方案。 Virtex-6 和 Spartan-6 FPGA系列建立在赛灵思公司十代FPGA产品所树立
[嵌入式]
莱迪思更新其解决方案集合,加速网络边缘的工业自动化
莱迪思更新其解决方案集合,加速网络边缘的工业自动化 -利用符合行业标准、基于AI的机器视觉和自动化功能加速智能工厂应用开发- 中国上海——2023年3月27日——莱迪思半导体公司,低功耗可编程器件的领先供应商,近日宣布更新Automate™和sensAI™解决方案集合,帮助客户实现最新的工厂自动化和工业机器视觉应用。 两款产品均在莱迪思低功耗FPGA上运行,可实现高效、灵活和安全的工业应用开发,同时带来低功耗和小尺寸优势 。 莱迪思Automate(v 3.0)现支持OPC-UA(开放平台通信统一架构)和TSN(时间敏感网络), 包括以下特性:  更新了IP库,新增RISC-V® freeRTOS(实时操作
[嵌入式]
莱迪思半导体进入新的增长阶段,目标是更高的利润率
莱迪思半导体(Lattice Semiconductor)在总裁兼首席执行官吉姆安德森(Jim Anderson)的领导下,一直以可靠、一致的可预测性执行。 该公司一直处于线性轨道上,即使是最近一次投资者日活动中的金融分析师也很难在其执行过程中发现任何争议。 该公司已经经历了五年的转型,现在正进入下一增长阶段。 特别是工业和汽车领域,已经连续三年保持增长。 莱迪思的首席执行官安德森也有一个强大的团队支持他。 在投资者日上,安德森助手是首席战略和营销官、FPGA 资深人士 Esam Elashmawi 和首席财务官 Sherri Luther。 两位都有助于推动产品线扩展,同时控制运营支出 (OpEx)。 改进的产品组合和一些定
[嵌入式]
FPGA双雄公布季度财报数据显示一片光明
FPGA供应商Altera和赛灵思近日陆续公布了健康的财务数据。 Altera公司四季度销售额为4.544亿美元,环比增长2%同比增长3%。 赛灵思则为5.87亿美元,环比下降了2%,但是同比激增15%。 “受益于Kintex 7系列产品的热销,我们的28nm产品总季度营收达到了1亿美元,Zynq 7000系列产品的销售额更是环比上升了一倍。”赛灵思公司CEO Moshe Gavrielov表示。 Gavrielov声称,28nm器件的销售,给赛灵思带来“连续两年市占率的提高”。 赛灵思季度净利润达到了1.76亿美元。 Altera的净利润则为9890万美元,环比同比均有所下降。 “我们的28nm新品是本季的增长动力
[嵌入式]
基于FMC标准的FPGA夹层卡I/O设计
 面对似乎层出不穷的新 I/O 标准,目前嵌入式系统设计人员继续依靠 FPGA 来部署系统日益重要的外部 I/O 接口,这点丝毫不足为奇。FPGA 可提供大量可配置的 I/O,能在适当 IP 基础上支持几乎无限多种高度复杂的 I/O 标准。设计人员还能用 FPGA 执行流内 (in-stream) 数据处理,甚至以数千兆位级信号传输速率和带宽运行的协议。   FPGA 能够灵活适应 I/O 要求变化。FPGA 经重配置(除了替换物理 I/O 组件和连接器外基本无需其它更改)后,便可部署新的协议。如果 I/O 不是实施在夹层模块上的话,那么这就意味着需要修改板的设计。为了避免设计更改造成成本和工作量的增加,设计人员以前一直采用 P
[嵌入式]
基于FMC标准的<font color='red'>FPGA</font>夹层卡I/O设计
基于FPGA的UPFC控制器IP设计
0 引言 统一潮流控制器(Unified Power Flow Con-troller,简称UPFC)是一种可以较大范围地控制电流使之按指定路经流动的设备,它可在保证输电线输送容量接近热稳定极限的同时又不至于过负荷。控制系统是UPFC的核心部分,它的主要功能是监测交流电网的传输和控制输出逆变波形,不但能使输出波形的频率跟定电网频率,而且可对输出波形的幅值和相位进行调节。 随着微电子技术的不断发展,各种新器件和新的设计方法不断出现,使得UPFC的控制系统设计也在不断发展。近年来,随着IC集成度的不断提高而出现的现场可编程逻辑阵列(FieldProgrammable Gate Array,简称FPGA)就是由可编程逻辑器件PLD(
[嵌入式]
实现测试测量突破性创新,采用ASIC还是FPGA
技术改良一直走在行业进步的前沿,但世纪之交以来,随着科技进步明显迅猛发展,消费者经常会对工程师面临的挑战想当然,因为他们觉得工程师本身就是推动世界进步的中坚力量。 作为世界创新的幕后英雄,特别是在电子器件和通信技术方面,工程师们要开发测试设备,验证这些新技术,以把新技术推向市场。这些工程师必须运行尖端技术,处理预测行业和创新未来的挑战。在开创未来的过程中,测试测量工程师面临的基础性创新挑战之一,是确定设计中采用专用集成电路(ASIC)还是现场可编程门阵列(FPGA)。 突破创新中采用ASIC的优势和挑战 在历史上,ASIC一直是测试测量创新的关键组件。通过组建专家团队设计专用电路,开发IP,公司可以给自己的产品架起一条
[嵌入式]
实现测试测量突破性创新,采用ASIC还是<font color='red'>FPGA</font>?
ADI面向便携式X射线系统推出Blackfin处理器
美国模拟器件公司(ADI)发布ADSP-BF533 Blackfin处理器,可为Innov-X系统公司的便携式X射线系统提供核心控制和信号处理功能。Innov-X便携式X射线系统是一种用于检查S.S Hunley号潜水艇恢复船体工作取得重大技术突破的仪器。 这种便携式设备,包含HP iPAQ软件用于仪表校准,采用称作X射线荧光(XRF)光谱法测定固体材料的组成。Blackfin处理器能够通过处理由Innov-X系统采集的“脉冲”数据来测量与元素周期表中具体元素相匹配的发射能量或发射波长以实现这种测定方法。此外,Blackfin处理器还为Innov-X系统提供多个独立的DMA控制器,它们以处理器内核的最小开销支持自动数据传输。
[新品]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved