低功耗处理器:下一个兵家必争之地

发布者:LogicLeaper最新更新时间:2008-08-07 来源: 电子产品世界关键字:dsp  低功耗 手机看文章 扫描二维码
随时随地手机看文章

      根据摩尔定律,每18个月(起初是24个月)芯片上的晶体管密度就会翻番,但是前几年功耗问题曾一度困扰Intel等公司的发展。为此,Intel对摩尔定律进行了大胆的修正,指出摩尔定律是晶体管密度、性能和功耗的折中发展规律。为此,多核开创了一个崭新的计算时代。

图1 原摩尔定律不再有助于功耗降低
  
      通常认为,多核设计与优化的处理器相互协同作用,才能带来芯片能耗降低的地震(图2)。多年来一直倡导在SoC中进行多核设计,在可配置多核方面独树一帜的Tensilica,在多核低功耗方面取得了巨大的突破,产品已经应用于Cisco ASR 1000F系列产品上,Cisco的QuantumFlow处理器采用了40核方案,Epson公司的PM-D870打印机采用了6核设计。

图2 特殊应用处理器对改进性能和降低功耗帮助最大

      在近日旧金山举行了Electronic Summit2008上,Tensilica公司的总裁兼CEO Chris Rowen博士称该公司处理器核功耗是其竞争对手的1/3,并介绍了开发秘籍:
  
1, 优化指令。Tensilica每个优化指令效率相当于普通的5~50个RISC指令;
2, 处理器核数量增加,但每个核几何尺寸更小,每个小核完成专门的功能,例如有的做无线通信、有的管协议,有的处理视频,有的音频……;在整体设计时,如果需要控制功能,控制核可以是Tensilca的,也可以是ARM或MIPS等公司的。
3, 处理器核接口方面,为了方便实现多核,需要新的通讯支持,Tensilca的Xtensa处理器核有更多的指定内存(memory-mapped)I/O和直接连接选择。
4, 建模和模拟工具Xenergy Energy Explorer在结构上进行了突破,包括建模和分析,软件开发和调试等。

关键字:dsp  低功耗 引用地址:低功耗处理器:下一个兵家必争之地

上一篇:ADI推出全新数字电位计AD529x实现更高精度
下一篇:R&S公司推出终端信号分析仪R&S FSV

推荐阅读最新更新时间:2024-05-02 20:41

采用DSP与STM32的智能型伺服控制器的软硬件设计及性能测试分析
伺服控制系统大部分都采用传统的硬件结构,控制算法比较固定,而且也无法实现不同工况下的高性能控制算法,难以满足现代工业的需求。现阶段迫切需要研制一种智能型、具有高可靠性、控制性能更加优秀的电液伺服系统。基于DSP与STM32的智能型伺服控制器具有软硬件结合程度更加紧密、系统的智能化程度更高、可实现多种控制策略的优势。本系统从实际的需求出发,结合精确数字PID控制算法和Fuzzy控制算法自身的优势,组合成Fuzzy-PID控制算法,根据偏差的大小范围选择合适的控制算法进行调节。 本设计将两款工控芯片—TI公司的浮点型DSP TMS320F28335和ST公司的ARM7升级版STM32F103RET6引入智能电液伺服系统,设计了基于
[单片机]
采用<font color='red'>DSP</font>与STM32的智能型伺服控制器的软硬件设计及性能测试分析
基于TMS320F2812 DSP的网络通信系统设计
以太网经过20多年的发展,已经成为现代互联网络中底层连接不可或缺的一部分,它组网方便,具有更好的开放性,成为当今最受欢迎的局域网之一。数字信号处理器(DSP)芯片作为一种特殊的嵌入式微处理器系统,是专门为实现各种数字信号处理算法而设计的,具有嵌入式的协处理器和用于快速数据处理的并行数据通道,其卓越的性能、不断上升的性价比及日渐完善的开发方式使它的应用领域越来越广泛,因此嵌入式网络开发的应用前景十分广阔,已经成为研究的热点。如何在DSP与PC机之间高速、可靠地进行通信,如何借鉴PC联网的成功经验将DSP联网,甚至与Internet对接,最直接的想法就是设计DSP与网卡的接口电路,通过对网卡直接编程,即可实现局域网内任意站点之间
[嵌入式]
低功耗温度测量与显示方案
摘要 温度测量系统应用广泛,被大量应用于电厂、建材、煤化工、冶金、供热、工程机械热处理、煤质化验等温度测控领域。实现高精度、低功耗温度监测成为多种行业的需求,本文介绍了一种超低功耗温度测量显示系统的实现方法,给出了其硬件连接方式及软件工作流程,对超低功耗设计方法给出具体思路。 硬件连接 谈到低功耗方案设计,有过单片机开发经历的工程师基本都会想到欧美知名芯片厂商的MSP430超低功耗MCU,MSP430在功耗控制方面处在行业领先水平,但片内资源有限,在进行高精度温度测量时需要采集温度传感器的微弱信号,12位的片内ADC就不能满足要求,需要外加仪表放大器和高精度ADC,以满足温度传感器信号的高精度测量,通常选择AD7794或ADS
[单片机]
超<font color='red'>低功耗</font>温度测量与显示方案
基于DSP的欠驱动体操机器人的摇起控制设计
1 引言 欠驱动机器人是一种部分关节为被动关节,能用较少的驱动装置完成复杂任务的机械系统。欠驱动机器人是近年来开始出现的一个较新的研究领域,针对欠驱动机器人系统的研究目前得到不少学者的关注。欠驱动机器人系统在很多的机器人系统例如多指机器人手、轮式移动机器人、太空机器人等非完整约束系统中都存在。因此近几年来,欠驱动机器人的运动控制问题引起国内外广泛的研究兴趣。同时,随着集成芯片技术的飞速发展,人们对欠驱动机器人控制的实时性和精度提出了越来越高的要求。 本文设计了一种基于DSP的机器人控制系统。该控制系统采用两级控制结构。以通用PC作为上位机,完成目标设定、轨迹生成、系统管理和人机接口等功能;以美国Analog Device公
[工业控制]
基于<font color='red'>DSP</font>的欠驱动体操机器人的摇起控制设计
基于加速度传感器的低功耗冲击记录仪的实现
引言 随着工业自动化水平的不断发展,产品质量监测、控制手段已经成为保证产品质量标准的不可缺少的一环。许多对装配有较高要求的产品,在运输过程中也同样对受到的冲击有极限要求。受到超过极限的冲击将给产品带来伤害,为企业带来不必要的损失。为监测运输过程,目前通常的做法是随产品一起安装冲击记录仪。 当前,国内普遍使用的冲击记录仪都是机械式冲击记录仪,其内部构造像一台照相机,有上下两个纸带卷筒,将记录纸带放入上纸筒,纸带的始端插入下纸筒。在纸带上方有一个固定记录笔的金属横梁,横梁上装有3只记录笔,分别记录X、Y、Z 3条轴线方向的冲击力。这种机械式冲击记录仪的缺点主要体现在以下几个方面: 机械式冲击记录,记录纸长度有限可记录的冲击数据也就有
[传感技术]
单片机系统的低功耗设计的策略
在嵌入式应用中,系统的功耗越来越受到人们的重视,这一点对于需要电池供电的便携式系统尤其明显。降低系统功耗,延长电池的寿命,就是降低系统的运行成本。对于以单片机为核心的嵌入式应用,系统功耗的最小化需要从软、硬件设计两方面入手。 随着越来越多的嵌入式应用使用了实时操作系统,如何在操作系统层面上降低系统功耗也成为一个值得关注的问题。限于篇幅,本文仅从硬件设计和应用软件设计两个方面讨论。 1 硬件设计 选用具有低功耗特性的单片机可以大大降低系统功耗。可以从供电电压、单片机内部结构设计、系统时钟设计和低功耗模式等几方面考察一款单片机的低功耗特性。 1.1 选用尽量简单的CPU内核 在选择CPU内核时切忌一味追求性能。8位机够用,就没
[单片机]
单片机系统的<font color='red'>低功耗</font>设计的策略
FPGA与DSP的高速通信接口设计与实现
  在雷达信号处理、数字图像处理等领域中,信号处理的实时性至关重要。由于FPGA芯片在大数据量的底层算法处理上的优势及DSP芯片在复杂算法处理上的优势,DSP+FPGA的实时信号处理系统的应用越来越广泛。ADI公司的TigerSHARC系列DSP芯片浮点处理性能优越,故基于这类。DSP的DSP+FPGA处理系统正广泛应用于复杂的信号处理领域。同时在这类实时处理系统中,FPGA与DSP芯片之间数据的实时通信至关重要。   TigerSHARC系列DSP芯片与外部进行数据通信主要有两种方式:总线方式和链路口方式。链路口方式更适合于FPGA与DSP之间的实时通信。随着实时信号处理运算量的日益增加,多DSP并行处理的方式被普遍采用,它们
[安防电子]
国半推出六款超低功耗数模转换器,应用于便携式产品
美国国家半导体公司(National Semiconductor Corporation)日前宣布推出六款全新的8、10及12位超低功率双通道及4通道数字/模拟转换器。新产品的推出使该公司的数字/模拟转换器系列有更多不同的型号可供选择。这几款数字/模拟转换器均提供3mm x 3mm的小型LLP及MSOP两种不同封装。 以上各款数字/模拟转换器的功耗都极低,若在2.7V至5.5V的供电电压范围内操作,稳定时间介于3us至6us(典型值)之间。以DAC122S085为例,这款12位双通道数字/模拟转换器若以3.6V的电压正常操作,其功耗最高也不会超过1.5mW,关机模式的功耗甚至低于0.2uW(典型值)。由于这几款数字/模拟转换器的
[新品]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved