基于DSP的磁存储设备抗冲击技术控制系统

发布者:tnzph488最新更新时间:2009-02-05 来源: 现代电子技术关键字:微型盘  主动控制系统  数字信号处理器  数据存储 手机看文章 扫描二维码
随时随地手机看文章

1 引 言

  对数据存储业来说,磁盘驱动器生产商通过增加磁道密度(以每英寸的磁道数为单位)和磁盘转速(以每分钟转数为单位)来扩大计算机硬盘驱动器的容量和改善其性能。随着磁密度的增加,两相邻磁道间的距离变小了。因此,所允许的读/写头和磁道的偏离误差,即磁盘驱动器业内所说的误定位,也相应的降低了,这样硬盘很容易受到伤害。他的工作原理决定其必须使用抗恶劣环境加固技术,而且主要针对机械物理环境和气候环境实施加固。对磁盘存储设备来说,机械物理环境中最为恶劣的是振动、冲击环境。本文采用了外加固主动控制理论与技术,将电磁主动控制技术用于计算机外部设备(微型盘)的振动冲击外加固,并且构建了以DSP 为硬件平台的数字主动控制系统[1]。

    2 数字控制系统的硬件设计

   从1982年TI(美国德州仪器公司)推出通用可编 程DSP芯片以来,DSP技术取得了迅猛的发展。目前DSP芯片市场中,主要由TI,ADI,AT&T和Motorola公司占据。本文综合实际要求,采用一款由TI公司生产的新型16位定点DSP芯片:TMS320F243[2],他集成了A/D,PWM调制等几种先进外设,特别适于对电机的数字化控制。

    2.1 控制系统原理

  数字信号处理器(DSP)具有实时信号处理能力和强大的运算功能。该系统的工作原理是基础加速度传感器拾取基础振动冲击加速度信号,然后送入前置放大器,由DSP将电荷放大器输出信号经A/D采样后,完成对信号的一次积分(转换为速度信号)和二次积分(转换为位移信号)运算,将两次积分结果做求和运算,再将结果经D/A转换后输入到功率放大器,最后将功率放大器输出信号以控制电压的形式加在执行机构上,执行机构会产生相应的作动力来抵消来自基础的振动和冲击。由于DSP片内集成了10 b的A/D,所以可直接将模拟信号与DSP相接,图1是整个数字控制系统的原理框图。的DAC7611。由于DSP内部10 b A/D的电压输入范围为0~5 V,输入信号经A/D转换后由数值0~1 023(十进制数)来分别对应0~5 V的电压信号。所以DSP的输入信号已不是正负对称信号,并且系统中DAC7611的输出范围为0~4.095 V,而系统后级中功放的输入应是零均值的,所以需要对DAC输出信号利用运算放大器进行电平变换。

   

  另外,DAC7611对于时钟信号的要求非常严格。 他要求其时钟信号的上升沿发生在每一位数据的传送过程中。TMS320F243的SPI(串行外设接口)是一个高速、同步串行I/O口,他可以设置每次产生的串行数据流的位数(1~16位),并且对于位传输速度也可以编程控制。

  SPI的时钟输出信号线SPICLK能够提供4种类型的时钟信号。其中有一种带延时的上升沿时钟,可使SPI在上升沿之前的半个周期内发送数据,或在SPICLK信号上升沿后接收数据。这恰好符合DAC7611时钟信号的要求。

  由于DSP片内资源有限,设计中在片外扩展了用于存放数据的RAMCY71021,其读写时间为12 ns,与DSP的速度匹配。并且该芯片在未被操作时会自动采用低功耗工作方式。在利用DSP的串行外设接口向D/A传送数据时,系统还采用光耦器件将数、模电路进行隔离。外围接口电路如图2所示。

   

    由于系统加电后,程序首先是从片内的FLSH程序ROM开始执行的,所以一定要把引脚MP/MC接成微处理器方式。

    3 数字控制系统的软件设计

    3.1 控制算法

  经过深入研究和大量的分析、计算,得出该系统 的机电动力学模型如下:

   

    其中:为基础振动加速度;c1,k1分别为与基础振动相关的二次积分和一次积分系数。

    设u为的电荷放大信号,根据控制要求,该系统主要利用DSP完成以下运算:

   

    并采用均值补偿法对积分结果进行修正,实现数字系统的控制。将上式离散化则生成:

   

    其中:m1(n),m2(n)分别是一、二次积分运算的均值。

    3.2 系统软件设计与实现

  系统头文件(扩展名为.h)的主要功能就是将DSP内部的各个特殊功能寄存器的名称与其默认地址相对应。在汇编语言的执行过程中DSP指针会直接按寄存器名去访问在头文件中规定过的地址。命令文件(扩展名为.cmd)实际上是DSP的资源配置文件,在PAGE0页(程序空间)他定义了各程序模块的起始地址和空间长度,对片内、外各程序段、中断矢量表的定义等;在PAGE1页(数据空间)他定义了各数据模块的起始地址和空间长度,如对各种参数、片内、外 66数据区的定义等。此外,应注意遵守DSP实际存储器及存储空间的约定。

  由于该系统主要是通过DSP的ADC模块和SPI模块与其外围器件通信,所以在软件设计中需要对他们的工作模式进行配置[1]。对于片内ADC的工作模式:首先应该确定ADC的启动模式,然后使ADC达到10 kHz的采样率。为了保证准确的采样率,通过DSP内部计数器计数产生中断作为ADC的启动方式。由于TMS320F243的机器指令周期为50 ns,所以在两次采样时间间隔内至多可以运行约2 000个指令周期,否则就不能完成实时运算。对于SPI模块:首先设定其通信方式为主模式,使数据按时序从SPISIMO管脚移出;然后设定每次传输串行数据的位数、时钟信号方式、传输速率等。由于DSP片外D/A器件为12 b,而DSP的数据总线位16 b,所以必须将最后的运算结果进行相应调整后再由SPI送出。

  另外,DSP内部的A/D由数值0~1 023(十进制数)来分别对应0~5 V的输入电压信号,所以应由值511来表示零均值点,这一点在均值补偿时要特别注意。系统程序流程图如图3所示。

   

    4 结 语

  采用DSP直接实现机电控制是近年才发展起来的一项技术,他比传统控制方法具有鲜明优点。实验表明,以DSP为核心的数字控制系统可以实现实时控制,而且低频段的相位误差非常小,同时又可以兼顾较高频段,适用范围大。此外,他稳定性好、精度高,并易于实现复杂模型的控制。

关键字:微型盘  主动控制系统  数字信号处理器  数据存储 引用地址:基于DSP的磁存储设备抗冲击技术控制系统

上一篇:基于DSP的彩色TFT-LCD数字图像显示技术研究
下一篇:基于FPGA的电力线载波调制系统的研究

推荐阅读最新更新时间:2024-05-02 20:45

基于DSP的物体重量实时动态监测的研究
  目前,对物体的重量进行测量主要依据两种基本原理。一是利用力学中的杠杆平衡原理,二是利用各种传感器将物体的重量信息转化成电信号,再对此电信号进行分析处理提取该物体的重量信息。前者适用范围广,量程大,是一种经济的方法,但测量精度有限且需人工完成,因此,这种方法无法实现实时动态测量。后者采用了传感器,这就有利于用电子装置来对重量信息进行分析、计算,并显示结果,但是,很多传感器受动态范围的限制。本文则从光学技术角度结合力学原理利用CCD传感实现了对物体的动态实时测量。    2 测量原理   CCD对物体进行测量的原理如图1所示。平面镜的转动支点为O,且垂线OW交透镜轴为W点。W点位于f′(焦距)与2f′之间。当没有测量物体时,平
[嵌入式]
基于DSP的液晶显示器接口控制设计方案
  1 引言   DSP即数字信号处理器,是一种特别适用于数字信号处理运算的微处理器,速度快,功能强,广泛应用于图形图像处理、语音处理、仪器仪表、通信、多媒体及军事等领域。液晶显示器由于具有功耗低、价格低、驱动电压低、接口方便、使用寿命长等特点以及优越的字符和图形显示功能,在各种图形显示、人机交互中得到广泛应用。   本文将给出TMS320LF2407型DSP(以下简称DSP)控制北京青云公司生产的LCM320240液晶显示屏的软硬件设计实例,说明如何通过DSP控制液晶显示模块。同时,由于程序采用系统设计C语言,因此对其他型号的DSP与LCD接口设计和控制实现也有一定的参考价值。   2 TMS320LF2407主要特
[嵌入式]
基于DSP和FPGA的水声定位系统主控机设计
近年来,海洋开发日益影响人们的生活和国家社会的发展。海洋油气开发、海底光缆工程、海底矿产资源探测等等都离不开水下声学定位的支持。目前广泛采用的水下目标定向系统是合作目标定向系统,合作目标定向系统可分为合作目标、声传感器阵列、信号处理和数据处理等部分。合作目标即是被测量的目标,但它能发射用于测量的合作信号。声传感器阵列在空间布设成一定的几何形状,对合作信号进行取样,获得目标的原始数据。信号处理部分把接收到的采样信号,转变成能反映目标声场特征的有用信号,形成观测数据。上述系统中信号处理和数据处理部分是定位系统的核心部分,本文提出一种水下合作目标定向系统的数字信号处理硬件平台解决方案以及基于该平台的声学定位算法的硬件实现方案,该平台采用
[嵌入式]
基于<font color='red'>DSP</font>和FPGA的水声定位系统主控机设计
DSP和CPLD的空间瞬态光辐射信号实时探测研究
摘要:探测系统对输入的空间瞬态光辐射信号进行实时识别处理,反演估算出空间瞬态信号能量大小并报告发生时刻。采用DSP+CPLD的数字处理方案,利用DSP的高速数字信号处理特性及COLD的复杂逻辑可编程特性,可实现对瞬态信号的实时识别和处理。其中用CPLD实现A/D变速率采样,解决了嵌入式系统线路板面积有限与实时处理需要大容量存储空间的矛盾。 关键词:DSP CPLD 实时处理 我国现役空间瞬态光辐射信号探测系统中,老型号较多,大部分没有配备自动检测和录取设备。空间瞬态信号的录取、数据的处理和上报大多由人工进行,难以胜任复杂环境下快速、准确录取信号以及气象情报入网的要求。为适应现代化气象分析的要求,采用DSP+CPLD的方式将极大
[应用]
基于高性能DSP的软件无线电平台系统设计
  随着微电子技术的快速发展,可编程芯片的处理能力也在不断加强,尤其是 DSP 芯片正在朝着高速,多指令并行执行的方向发展。 DSP 处理能力的增强,使得原来运算量很大的算法可以用软件的方式快速实现。由于软件处理的灵活性,这给整体的 无线电 体系结构带来了深刻的变化。   软件 无线电 是指一种基于可编程的,具有一定灵活性的高速信号处理平台。处理平台上的设备都可以进行重新配置,将通用化、模块化、标准化的算法单元用软件方式实现,根据系统的实际需要,在软件中添加各种不同算法,可以完成特定的功能,因而可以跨越多种通信标准。当需要从一种标准切换至另一种标准时,处理器能够动态的在软件的主要部分切换 。   2 系统结构设计
[嵌入式]
基于高性能<font color='red'>DSP</font>的软件无线电平台系统设计
ARM、DSP、FPGA的技术特点和区别
ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。ARM架构是面向低预算市场设计的第一款RISC微处理器,基本是32位单片机的行业标准,它提供一系列内核、体系扩展、微处理器和系统芯片方案,四个功能模块可供生产厂商根据不同用户的要求来配置生产。由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行。目前ARM在手持设备市场占有90以上的份额,可以有效地缩短应用程序开发与测试的时间,也降低了研发费用。这里有一篇介绍ARM结构体系发展介绍。 DSP(digital singnal processor)是一种独特的微处理器,
[单片机]
基于快速传输海量存储的电能质量监测系统
    随着电力电子设备的应用领域越来越广,导致用电负荷加大,其中一些冲击性、非线性负荷使得电网中电压波形畸变,电压波动、闪变和谐波含量增加等问题时有发生,电网受到严重污染;另外,随着精密和复杂电子设备的大量应用,对电网电能质量的要求也越来越高。因此如何提高电能质量是电力企业面临的一个重要课题,而对电能进行实时监测是提高和改善电能质量的一个重要组成部分。     目前已有的电能质量监测设备基本实现了对数据的采集、传输以及分析处理功能,只是在各功能实现的方式上有所不同。文献分别采用虚拟仪器技术、DSP+MCU双CPU设计以及在LPC2478上移植μC/OS-Ⅱ操作系统技术来实现对电能质量的监测,其中与外部的通信部分采用RS-232、红
[电源管理]
基于快速传输海量存储的电能质量监测系统
基于SCSI总线的超高速实时图像数据存储系统
    摘要: 超高帧频实时图像的长序列采集存储一直是难于解决的问题。本文基于SCSI总线的理论体系,提出一种新的图像数据采集存储系统的技术方案和体系结构,并设计出一种超高速、数字化、嵌入式系统样机。试验结果表明在多通道同时使用的情况下,采集与存储速率达到了100Mb/s,满足了1000帧/s的黑白数字图像直接存硬盘技术需要,验证了此系统的有效性。     关键词: 超高速 SCSI 实时存储 图像 引言 目前,对高速数字图像的采集与存储的需求越来越大,但大多数此类系统都依赖速微机、高速图像采集卡和超大容量内存。满足这些条件必然使成本成倍增高,价格昂贵,且它有一个很大的缺点是容量小,即便是使用超大容量内存
[缓冲存储]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved